
 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12874

The Developer's Blueprint: A Systematic

Approach to Managing Complexity and

Engagement in Interactive Entertainment

Prathamesh Babarao Khalokar, Rohith J Shet, Dr. Balaji K

Master of Computer Applications (MCA) Student, Department of Computer Science, Surana College Autonomous,

Kengeri, Bengaluru, India

Master of Computer Applications (MCA) Student, Department of Computer Science, Surana College Autonomous,

Kengeri, Bengaluru, India

Director, Dept. of Computer Science, Surana College Autonomous, Kengeri, Bengaluru, India

ABSTRACT: A critical skills gap is emerging in the video game industry driven by the stark contrast between a

game's polished user experience and its complex development process. While the industry now operates at the scale of

mainstream software, many developers who are skilled in using modern game engines lack a deeper understanding of

fundamental algorithms and optimization. This deficiency hinders their ability to tackle complex technical challenges to

control project scope.

To bridge the skills, gap this research analyzes the essential techniques of modern game development. We will

investigate the core algorithms that optimize performance across various hardware as well as the design strategies that

create immersive experiences and drive long-term player engagement and the impact of new technologies like AI,

cloud computing, and Rust in contrast to legacy practices.

The aim of this paper is to create a unified framework for understanding today's game development challenges and

opportunities. The goal is to offer developers practical insights for managing complexity while giving stakeholders a

clear view of the future of interactive entertainment.

KEYWORDS: Game Development, Player Engagement, Artificial Intelligence (AI), Game Engines, Cloud Gaming,

Real-Time Rendering (Ray Tracing, DLSS), Procedural Content Generation (PCG), Agile Development, C++ & Rust,

Cybersecurity & Anti-Cheat, Monetization & GaaS (Game as a Service)

I. INTRODUCTION

There is a significant contrast between the seamless experience of playing a video game and the complex, multi-stage

process required to develop one, the full range of skills and effort involved in game development is often

underestimated by its audience and participants alike.

As the gaming industry's complexity begins to mirror that of the mainstream software industry a crucial skills gap

becomes apparent, many developers are unfamiliar with foundational algorithms and techniques that can make

development significantly more efficient. There are scenarios where developers faced challenges there are scenarios

where developers advanced the challenges like technical problems, game design problems and scopes and future creep.

As a game developer, developer must need to pay attention to future technologies, effective utilization as well as

reducing complexities and user required specifications in this development process if developer doesn’t pay attention to

user’s device specifications can lead to game failure there are some games they failed just after release and some games

that became hit even after years of development.

To tackle those problems developers tend to use such algorithms that the game work in efficient manner without

needing to have high end machines, and using such techniques that game can feel more realistic to user, how developer

can leverage latest technologies and we will also take a look into what are the techniques developers use to maintain

user retention or let’s say make users stick to their games these factors play crucial roles to make any game a hit.

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12875

What kind of mindset an video game developer keeps so that they can maximize the profits and utilize the time

deadlines given by parent company we will also take a look into some revolutionary methods that took game

development on more efficient turn as well as some algorithms and techniques that are used from long time their

problems and what things can be replaced when we consider development like why C language is used when we also

have RUST language which is used to develop and build algorithms.

In this research we will also look into future trends, impact of Artificial Intelligence and Cloud on game development.

Expected growth based on current market analysis and areas where strict improvements are needed, further this

research can be extended upon current or legacy algorithms and technologies reworked and or get better than those.

II. MODERN DESIGN FUNDAMENTALS IN GAMING

2.1 Factors Influencing Game Engagement

When we talk about these a game being interesting there are some things that need to implement so that users can keep

on playing video game, following methods are used by developers to make game interesting for players

Game Design and Elements -An game having integrated mechanics, arts and cohesive experience as interconnected

mechanics helps you get richer gameplay (1) as well as establishing clear and achievable goals while increasing

difficulties by levels make players engaged.

Engagement- Realistic graphics and sound effects with eye appealing visuals makes player feel they are present in

game world instead of real-world cherry on cake Third-Person prospective makes player see the game in realistic way

deepening their connection with game making players emotionally bound with stories. (2).

Meaningful experiences-these days new developed games have eudaimonic experiences where developers can address

serious topics and promoting reflections which can help players enhance wellbeing and making it multiplayer helps

build social engagement.

2.2 Developer induced factors for engaging content

Implementing Proper Progression Systems

Progression systems are integral part of games it simply means a game should have some mechanical structures that

can ensure player a forward momentum throughout the gameplay making players feel that their given time is

worthwhile in game.

There are several types of progression systems we have like Time-based progression systems, Horizontal progression

systems, Vertical progression systems, Luck-based progression systems, Legacy progression systems, Narrative

progression systems, Resource progression systems, Mission, world and level progression systems and Player

character-based progression systems.

Game developer must choose which one to use and how he can mix few systems so that upon implementation helps in

motivate players and creates sense of achievement to players (3).

Implementing Dynamic Difficulty Adjustment System

DDA is a technique with which developer can implement mechanism to automatically scale game parameters,

scenarios and AI behavior in real time based on player’s skill level which solves the problem where if the player is

skilled, he may feel that the content is too easy and if the player is rookie he may feel like the content is too difficult

eventually making it boring for both types of players.

DDA is increasingly recognized as strategic mechanism for improved player retention especially in Free to Play games

it helps in incrementing the lifetime value (LTV) of users.

Modern DDA use advanced algorithms of Artificial Intelligence/Machine Learning whereas traditionally DDA was

based on rule-based heuristics and static performance metrics.

http://www.ijarcst.org/
mailto:editor@ijarcst.org
https://scispace.com/records/fulltext01-compressed-pdf-4k45gkwv

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12876

Let’s have a quick look into both types of DDA algorithms, Traditionally - Rule Based Systems works on fixed matrix,

Rubber Banding: usually used in racing games where AI vehicles slow down or speeds up, Preset Difficulty levels: like

Easy, Hard and Epic, Bayesian Optimization: fine-tuned difficulty based on player input. All these algorithms and

techniques were good, but they lacked personalization, couldn’t be able to deal with complex behaviors, and it required

manual updates upon changes

Modernized - Deep Reinforced Learning (DRL): learning best difficulty adjustment from player’s interaction, Neural

Networks: It can predict players emotional skills and emotional state, Affective DDA: uses physiological data to

deduce emotions like boredom. These algorithms helped in solving traditional problems like being highly adaptive and

handling complex player data. (36)

Implementing Matchmaking Strategies

If the game is multiplayer it needs to be bound with matchmaking algorithms and strategies, it plays crucial role in

competitive environment and it drastically affects players engagement and retention these strategies directly affect

player’s results in game and has indirect effect on player engagement.

Some of the strategies that we use are:

Skill Based Match Making (SBMM)- In these strategy developer matches player with such opponent who has closest

skill level as the player has, it aims and ensures fair gameplay among players with the help of this strategy players

always have a fair chance of 50%-win rate.

SBMM have issues despite being fair strategy like sometimes certain player can lose several times in row as it 50/50

win to lose ratio it may happen causing players disengagement.

Optimal Matchmaking Policies- This strategy optimizes the problem SBMM has faced it prioritizes maximizing

matching flows between players who are on high skill level but lost (suppose take 2 Losses) will be matched against

low skilled player who have won recently (suppose 2 wins).

This strategy helps maintain engagement of high-level players by not stirring them and giving them easy win and low-

level players are less likely to think of leaving.

Pay to Win Systems (PTW)- It is little controversial method of matchmaking where players who pay real money will

have improved competence, and giving priorities based on subscription plans giving disadvantage to players who can’t
pay or don’t want to pay.

AI Powered Bots- game developers use AI powered bots to mimic human playstyle bots can be used for lots of

different things in matchmaking like manipulating match outcomes, to influence player engagement, etc. If player

notices high bot ratio that can lead to players disengagement. (4)

III. ADVANCED TECHNOLOGIES & TECHNIQUES

3.1 Pre-Development Phase

3.1.1 Game Engines

Game engines are basic software with which we will develop games whether they are 3D or in 2D these Engines can be

paid or open source there are several game engines available in market choosing the right one depends on the

requirements of developer and emerging trends that developer intends to involve in development process.

Unreal Engine 5: It is a Source Available (not fully open source) powerful real-time 3d creation tool which was

developed by epic games (Game Store), it helps game developers to create awesome visuals and dynamic gameplay

with that developer can also create interactive experiences. It is popular for its AAA game titles like Fortnite and Gears

of War etc. it is also used for virtual production and AR/VR applications as well as simulations. We can develop games

for almost all the major platforms like PlayStation, Windows, Xbox, Nintendo etc.

Latest Unreal Engine 5 comes with cutting edge features that push the boundaries of real-time 3D creation across

gaming, film, architecture, and more. (5)

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12877

Unity HDRP: High-Definition Render Pipeline (HDRP) it is a Scriptable Render Pipeline designed by Unity for unity

platforms. It uses advanced shadowing techniques such as physical based lighting and HDR lighting and it is widely

used for cinematic visuals and AAA quality games. Latest version of unity engine is Unity 6 just like Unreal Engine

Unity6 is also and Source Available game engine having advanced development environment for game development.

(6)

Godot 4.0: It is an Open-Source game engine it is also designed for 3D and 2D game development. It uses GDScript

which is a python like programming language for game development it has scene system where games are build using

scene system and it’s a cross-platform deployment engine meaning it can be deployed on almost every OS. It is very

lightweight (100mb) easy and fast to install in systems. (7)

3.1.2 Development Workflow

 Development workflow is prerequisite part of game development where developers determine how much resources

they are going to use and a detailed blueprint of development lifecycle eventually helping to walk on a predetermined

path with less likely prone to issues, we use integrated methodologies in game development for efficient game

development.

Agile + CI/CD + GitHub: Advanced technology has enabled the creation of complex and realistic games which resulted

in high cost. we faced so many problems in game development such as unique problems with certain games which can

be problematic for its growth, traditional methodologies such as waterfall model, manual builds brought management

problems derived from multidisciplinary teams, leading to communication barriers between artists and developers.

Therefore, Kanode and Haddad suggest solutions like iterative methods, prototyping, and content pipeline creation for

game development. Furthermore, adaptations of Agile methodologies like XGD and GUP improved game

development.

XGD- eXtreme Game Development is simply an adaptation of extreme programming specifically tweaked for game

development integrating XP principles with game design as well as game content. XGD focuses on incorporating

multimedia content into continuous integration and testing specific game elements, Unlike XP, XGD lacks explicit

guidance on collaborating in multidisciplinary teams, but it highlights the importance of treating the team as one unit

therefore it suggests artists should work together, much like how developers do pair programming.

GUP-Game Unified Process combines RUP's (Rational Unified Process) stability with XP's flexibility to mitigate

software changes and prevent over-documentation. GUP’s iterative approach extends its usability for artists and

designers its majorly overcomes the challenges of waterfall model.

There are more methodologies that are tailored for game development which are, Game Scrum- it is also a hybrid

methodology which combines XP with Scrum specifically for game development combining real-world knowledge

with focus on newcomers, Game Design Document- The creation of game design document is crucial in pre-production

phase as it outlines the project's boundaries and guides the entire team through development and testing.

Additionally, GitHub like repositories play crucial role as they provide continuous integration and continuous

deployment making a team of developers to work on one iteration at same time. (8)

3.2 Production Phase

3.2.1Graphics Rendering

 When we talk about game development, we always must think about rendering game development has evolved

over a decade making games more realistic than ever we will see some technologies that we use and must be known to

everyone with their significant technologies that we used to use in past.

Ray Tracing: Ray Tracing is a computer graphics rendering algorithm it is used to render 3D images on 2D screen, it

manages light in such a way that a developer can produce highly realistic images, it is a powerful tool to create

photorealistic images, there are three stages of ray tracing.

Traversal Stage- It’s a process of using a spatial index to quickly find where on object first ray hits making it useful to

identify visible surfaces.

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12878

Intersection Stage-once the object is identified the ray tests geometric objects for precise hit.

Shading stage-this stage calculates how the light interacts with hit point, defining final color.

Advantages of using Ray Tracing in game development

It provides high realism by simulating realistic lighting conditions by handling complex lighting scenarios making it

more eye appealing for a player, and one of the features of using ray tracing is that its efficient use of memory by only

writing final results to memory also making it good from development perspective.

Rasterization: Most certainly when we talk about rendering we should not forget about rasterization method which is an

traditional method for rendering 3D scenes on 2D screen, it works by conceptually projects geometry forward from 3D

to 2D, it processes one triangle at one time projecting on screen then painting them, it is more useful where

computational resource are limited and scenes were less complex particularly it has bigger limitation for current gen

games which is that it has limited ability to handle Global Illumination effects making it less viable in current era of

game development. (9)

DLSS: Also known as Ray Tracing Deep Learning Super Sampling used to improve visual quality and performance of

game using Artificial Intelligence, the latest iteration of DLSS, known as DLSS 4, utilizes a Transformer model,

enhancing its ability to interpret inputs and recognize long-range patterns, DLSS just basically improves performance

by rendering games in low resolution and upscaling them to High Resolution and enhancing lighting and shadow

quality using Artificial Intelligence. (10)

Nanite: Nanite is a technology used in Unreal Engine 5.3 primarily used to render complex scenes in Virtual Reality

(VR) environment. Nanite significantly reduces the number of triangles and draw calls in complex scenes, eventually

enhancing performance in VR environments. It is still in development phase hence it requires optimizations such as

minimizing GPU load and FPS drops. (11)

3.2.2 AI, NPC Behavior & DDA

AI has made significant impact on game development particularly enhancing Non-Playable Character (NPC) and

Dynamic Difficulty Adjustment (DDA) to offer more immersive and personalized gaming experience to players while

AI introduced easy options for developers to implement such things

NPC Behavior: The advancement of AI has transformed NPCs from predictable bots to dynamic individuals which can

act on players action in more intelligent, realistic and diverse ways this makes more engageable playstyle for players.

Traditionally NPCs based on preset roles lacked depth in player interactions for better interactive gameplay we should

take advantage of AI technologies such as Real AI-It is powered by algorithms like deep learning it excels in complex

game environments even surpassing traditional AI, Alpha Go-It blends deep neural networks and Monte Carlo tree

search algorithms and it was developed to address traditional AI approaches, OpenAI Five- OpenAI Five serves as a

good example of AI it has capacity for sophisticated strategy, teamwork, and quick decision making in the complex

environment of Dota 2(video game) and implement AI in NPC behavior. While AI is advancing it’s important to have

knowledge of traditional methodologies for NPC behaviors such as RBSs-Rule Based Systems simply based on

predefined rules that determine behavior of NPC on specific conditions, FSMs-Finite State Machines represent NPC

behavior as a set of states with transactions triggered based on certain events which determines NPC behavior,

Behavior Trees- It’s an hierarchical approach where it determines NPC behavior as a sequence of actions and decisions

which mostly promotes complex modelling

DDA: Dynamic Difficulty Adjustment AI driven mechanisms can adjust game’s difficulty based on players skills

which sets fair and optimal challenges for individual player personalized difficulty offers immersive gameplay for

player. DDA systems adapts in real-time maintaining players interest and avoids frustration by giving more tailored

gaming experience. Before DDA came into picture games typically offered static difficulty settings which had

limitations eventually making players frustrated as sometimes difficulty goes too high for low skilled player as well as

difficulty goes too low for high skilled player. DDA involves observes players behavior and game performance to

adjust difficulty by collecting data and modifying entities like health and enemy spawns, it’s quite challenging to

implement as concerns revolves around players data collection, some models which we use for DDA are: HMMs-

Hidden Markov Models are powerful statistical models which are commonly utilized in algorithms like speech

recognition which operates based on observable sequences and hidden states uncovering hidden patterns from

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12879

observable data, Reinforcement Learning- RL is an Machine Learning approach where an agent learns to make

decisions by interacting with environment.(12)

3.2.3 Physics Simulation

Simulating Physics is crucial part of game development it enhances realism and interactivity of virtual game

environment. The goal is simple to provide visually plausible gameplay rather than strictly following science to create

physics such simulations are often powered by physics engines.

Physics Engines: These are software libraries with API (Application Programming Interface) that handles the

simulation of physical systems, traditionally for video games it specialized in simulating the complex interactions

between solid, inflexible objects, then the technology evolved which included cloth, ropes, elasticity, and fluids,

popular engines nowadays are NVIDIA PhysX and Havok similarly MuJoCo and PyBullet

Whereas we use various types of physics methods to apply physics in virtual environment such as Rigid Body

Dynamics, Soft Body Simulations, Collusion Detections etc. which helps us create more interactive realistic virtual

world for games. (13)

3.2.4 Content Generation

Imagine with just one algorithm you can create whole world for your game exactly this is what content generation is in

game development certainly it is a subjective step for any game as not all games are designed in automated ways.

PCG: It simply refers to a process of creating game elements such as levels, worlds and even characters automatically

using predefined algorithms and patterns instead of crafting such elements manually this technique is called as

Procedural Content Generation (PCG). PCG is responsible for infinite worlds and infinite levels

Traditionally we used techniques like Perlin Noise- Perlin noise is a versatile function and one of the most common

components of procedural shading systems in computer graphics and it is used to generate natural looking, non-

repeating textures, Handcrafted Levels- It is simply manually developed levels designed by developers it’s an

evergreen content generation method.

Such methods and techniques combined can create engaging and immersive gameplay experience for players random

content is somewhat loopable and kind of infinite whereas manually created content takes more time but delivers a

more realistic gameplay experience. (14)

3.2.5 Networking

Networking is a main part of online multiplayer games, players experience game together where stable content delivery

game content is necessary to retain players good experience in multiplayer video games a developer must focus on

networking part ensuring security as well as low latency cloud has become one of the futuristic tools which helps

developer to focus on game development rather than networking part developer must need to think about eliminating

network delays and providing an stable smooth network experience to players.

Cloud-based multiplayer: cloud networking is an emerging trend in current networking era making is more sensible to

use rather than traditional networking as developer does not have to worry about underlying hardware as well as

scalability, all the cloud resources are managed by service providers like servers and uptime whereas traditionally

Client Server architecture was popular among developers but they couldn’t be able to push boundaries due to hardware

constrains and high upfront cost of physical networking which later fixed by cloud networking. (30)

Rollback Netcode: It is a system designed to minimize perceived input lag in online games, to avoid lag this technology

predicts one’s opponents move and keeps the action going on to one’s screen without any pauses which makes

everything to be felt smooth and fast Traditionally we used to use Peer to Peer (P2P) 1v1 connections the most

common system was Delay-Based (or Lockstep) Netcode- this system ensured both players are in perfect sync by

simply intentionally delaying inputs to match delayed latency which caused poor user experience additionally when

players bandwidth was low it makes game choppy and control felt slow for players. (15)

3.3 Postproduction/ Live Services

http://www.ijarcst.org/
mailto:editor@ijarcst.org
https://scispace.com/records/ai-npc-behavior-pdf-y923raa1

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12880

3.3.1 Distribution

The era has turned to Digital Distribution (DD) by eliminating the need of physical media/game through cartridges or

discs. This concept came into picture in 1980 where Atari 2600 used to deliver services like GameLine through DD,

typically DD reduces almost 30% cost of game delivery. Earlier games were delivered through disks and drives

(physically) but nowadays these physically delivery methods are kind of vanished due to advancements in technologies

and better network connections where mostly games were delivered through online stores like Epic Store and Steam

Game Store making it easier for developer to sell and deliver games and their updates onto cross platforms, similarly

cloud is used to stream games with just internet connection players can play games without installation.(16)

3.3.2 Immersion

Immersion simply means when a game pulls a player in so deeply that you forget it's not real, which is achieved by

several things like AR/VR(Augmented Reality/Virtual Reality),Haptic Feedback, Metaverse Integration etc. are part of

modern games developer should take advantage of such technologies by implementing them in game for more

immersive experience of players, traditionally developer had to think about monitors, joysticks and Rumble Packs

which are still viable in current generation.(37)

IV. EXPLORING ALGORITHMS BEHIND MODERN GAMING FUNDAMENTALS

4.1Rendering

4.1.1Physically-Based Rendering

It is used to create photorealistic images by simulating the physics of light. Its unique "literate programming" approach

combines theory with the complete C++ source code of its companion open-source renderer, pbrt. It Solves the

Rendering Equation using Monte Carlo integration to achieve physically accurate light transport, this algorithm can be

adapted for modern games due to its advanced light transport methods and core algorithms like Path Tracing for global

illumination and Metropolis Light Transport (MLT) for complex lighting scenario and much more. (17)

4.1.2 Temporal Upscaling

It is an algorithm used to improve performance by rendering a scene at a lower resolution and then intelligently

upscaling it to a higher output resolution it enhances image quality by using data from both the current and previous

frames to construct a high-quality, upscaled image this allows the game to run at a lower internal resolution while

Unreal Engine native to epic uses TSR (Temporal Super Resolution) and TAAU (Temporal Anti-Aliasing Upsampling)

whereas NVIDIA DLSS (Deep Learning Super Sampling) which is native to NVIDIA, similarly Intel XeSS (Xe Super

Sampling), AMD FSR (FidelityFX Super Resolution) are native technologies to their own graphics card. . (10)

4.2 Collusion Detection and Physics

4.2.1 GJK Algorithm

The Gilbert-Johnson-Keerthi (GJK) algorithm, a fast and efficient method for detecting collisions between two convex

shapes, instead of getting bogged down by checking every single point and surface on the shapes, it uses a clever

mathematical trick called the Minkowski Difference to figure out if they're touching. This makes it a very fast and

efficient way to detect collisions. (18)

4.2.2 Continuous Collusion Detection

Continuous collision detection uses advanced calculations to predict collisions that might be missed between the game's

regular physics checks in other words CCD is a family of techniques that try to stop bodies from tunneling into (or

through) each other at high velocities, while this method is more accurate, it also demands more processing power than

standard collision detection (19)

4.2.3 Separating Axis Theorem (SAT)

This theorem is used to detect whether two shapes are colliding, the main principle is that if you can draw a straight line

between two objects when they are not intersecting this line is called a separating axis think about this is if the

"shadows" (projections) of the two shapes onto this line do not overlap. (20)

4.3 AI Decision Making & Path Finding

4.3.1 Utility AI

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12881

Utility AI is a decision-making model for game it acts like a character's brain constantly figuring out the most useful

action to take. It rates every choice with a "utility" score the action with the highest score is the one the AI chooses to

execute. (21)

4.3.2 MCTS

Monte Carlo Tree Search (MCTS) is a powerful algorithm for decision-making in sequential problems most famously

used for creating AI in complex games its use of random sampling within an intelligent tree search to balance

exploration (trying new, uncertain options) with exploitation (using options that are already known to be effective). The

central mechanism that makes this work is the UCT (Upper Confidence Bounds for Trees). (22)

4.3.3 Navigation Meshes

It is a Data Structure used to represent the walkable areas of environment which allows characters to plan visually

convincing paths these meshes are widely used in Static Environments because recomputing entire mesh every time an

obstacle moves, appears or disappears is computationally expensive operation this limitation makes it difficult for to

create dynamic worlds. The core of navigation mesh is Explicit Corridor Map (ECM) which is based on the medial axis

(it is the set of all points in an environment that are equidistant from at least two distinct closest obstacle points). (23)

4.4 Animation

4.4.1Motion Matching

Motion Matching is a popular character animation technique used in the games industry it works by searching through

large library of animations to get the best frames that matches characters current position and where the player wants to

go next, whereas LMM(Learned Motion Matching) is the replacement of the large, memory-intensive animation

databases used in traditional Motion Matching with a system of three specialized neural network. (24)

4.4.2 Inverse Kinematics (Procedural Animations)

To make a character's hand or foot reach a desired location Inverse kinematics (IK) is used to automatically determine

proper angles for the joints of the hand or foot. This approach is the opposite of forward kinematics, which simply

calculates the endpoint's position based on already known joint angles, traditional animation was costly and results in

static movements, while procedural animation (e.g., for ragdolls) uses mathematical rules to generate interactive real-

time motion. (25)

4.5 Procedural Generation

4.5.1 Wave Function Collapse (WFC)

Wave Function Collapse (WFC) is a content generation, greedy algorithm that creates large & complex patterns using

just a few simple rules, it works by satisfying constraints without backtracking and its name is a nod to quantum

physics, it uses information theory to calculate the probability of each component. Whereas A Houdini-style asset

pipeline is a procedural and non-destructive workflow for creating and managing assets in 3D projects particularly in

animation visual effects and game development (26)

4.6 Security & Anti-Cheat

4.6.1 Anomaly Detection

Anomaly detection in gaming is an advanced technology that spots irregular activities to improve security ensuring fair

play and it enhances overall players experience it works or machine learning model, it can be used for various security

applications. (19)

4.6.2 Hardware Level Security for Anti-Cheat

Hardware-level anti-cheat systems integrate with key hardware and firmware features to ensure the integrity of the

system from the moment it boots up, it eliminates risks of hackers from cheating in online games as it follows certain

modules like Trusted Platform Module(TPM) providing hardware based root of trust, Secure Boot- A feature of

UEFI(Unified Extensible Framework Interface)firmware ensuring and trusting only trusted software’s, Hardware

IDs(HWID)- Anti-cheat systems often create a unique fingerprint of a user's hardware components like motherboard,

CPU, GPU, etc. preventing cheaters. (27)

V. ROLE OF C++, C# AND RUST

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12882

From decades the game development industry is ruled by two programming languages which are C++ and C#. these

two languages are responsible for most of the popular games, where C++ also known as manually managed language is

the language of choice it is used for building foundational architecture of high-performance game engines (e.g., Unreal

Engine) where its high performance and granular control are indispensable for developing graphically intensive AAA

games, C# however is used in engines (e.g, Unity) to quickly it facilitates rapid and quick writing of scripts such as

game logic, rendering and animations. enabling developers to build sophisticated gaming experiences by combining the

low-level optimization of C++ with the high-level productivity of C#.

we may think that these languages are too old how they are still relevant to this day when they are not even used in

software development widely, there is only one thing which matters in game development that the game should work

without lag and none of the current generation high level programming languages are capable of giving performance as

these old languages do making it more sensible for game development, there are languages like RUST, LUA,

PYTHON, JAVA all of these languages are used in game development .

RUST developed by Mozilla Research starting in 2010 and now managed by the Rust Foundation it is designed to offer

the performance and control of high programming language like C++, it said to be a secondary option to C++.

Based on the Oscar Nordström and Lowe Raivio’s research they found out that none of the language is winner when

compared, the best language depends on development needs as both are great for game development but have different

strength like C++ demonstrated a lower execution time and better performance in the few areas which are Calling

anonymous functions, Inserting data into hashtables and Creating and starting threads whereas Rust showed superior

performance and had a lower execution time for operations like Creating anonymous functions, Searching and deleting

entries in hashtables and Joining threads. (28)

Rush has its advantages and disadvantages compared to manually managed languages like C++ some of the advantages

are memory safety and performance- it combines the performance of C++ with the memory safety guaranteed by its

"Borrow Checker", modern language features- many developers found that rust’s syntax more developer friendly such

as pattern matching and default immutability, setting it apart from competitors like C++, helpful compiler- rust's strict

compiler guides developers to correct solutions by catching critical errors before runtime for example during the

implementation of WFC (Wave Function Collapse) it can prevent bugs by verifying array indexes, ecosystem and

tooling- with cargo, its integrated package manager manages dependencies as well as it helps in creating modular

projects is straightforward manner. Whereas it also has some disadvantages like long compile times- the primary

challenge an developer faces while using Rust as its slow compilation where minor changes take 30 seconds and full

rebuilds over 9 minutes although developers solved this by breaking project into multiple smaller packages or “crates”

which reduced average compile time to 7 seconds, prototyping resistance- the developers found that iterative

refactoring was more challenging in Rust than in C++ as its compiler demands provable correctness eventually

rejecting code which may be considered safe or not yet been proven correct, ecosystem immaturity-although Rust’s

game development is rapidly improving, its still does not have resources as C++ has prime example of that is

inconsistent library documentation. Ultimately the benefits offered by its powerful features and guarantees of code

correctness tend to outweigh any associated drawbacks that said there is still steep learning curve exists; game

developers should try rust language for their future projects. (29)

VI. ROLE OF CLOUD COMPUTING

The cloud refers to servers that are hosted over internet, in current generation cloud is taking over traditional computing

as well as IT industry its SaaS, PaaS and IaaS models making it more useful for game development lets understand how

cloud is used in gaming.

6.1 Cloud in Game Development

Game development requires huge amount of computational resources and for a small game development firm it’s

almost impossible to manage upfront cost for it that’s where cloud came into picture providing virtual computational

resources at low cost.

6.1.1 Features and Services of Cloud That Can be Crucial for modern games

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12883

Cloud provides diverse and flexible environment for a game developer with its features utilizing such features can be

game changer for efficient game development. Let’s look at the areas of game development where cloud features shine.

Flexible and Collaborative Development Environments

Virtual Workstations-Developers can access powerful pre-configured devices anywhere with just an internet

connection this allows developers to work with more processing power without needing to worry about maintenance

and cost, centralized version control and asset management-cloud provides parallel as well as distributed computing

with which multiple developers can contribute in one single repository simplifying collaborations on complex projects,

cloud based build pipelines-compiling massive AAA like games is too much time consuming bottleneck as cloud

allows parallelism of tasks among multiple machines eventually reducing build time as well as more frequent testing

and iteration. (30)

Scalable and Managed Backend Infrastructure

Elastic Scalability- cloud infrastructure can automatically scale resources up or down to handle player loads during

peak time and can automatically scale down during less player base to save cost where Pay-As-You-Go model bills

only for whatever resources are used making it useful to prevent overprovisioning, managed databases- cloud providers

offer verity of managed database services such as SQL and NoSQL which handle complex tasks (e.g. setup, patching

and scaling) helping developer to focus on game development rather than database administration, global server

deployment- globally distributed data centers by CSPs allow developers to minimize latency by hosting games near

players, giving more responsive experience to global audience, microservices and containers- modern games are

frequently built with independent microservices like chat or matchmaking, cloud platforms and tools like docker and

kubernetes are key to modern game development making it simple to develop and deploy.

Powerful Live Game Operations and Analytics

AI and Machine Learning- Cloud platforms offer AI and ML services with these developers can create features like

sophisticated matchmaking, fraud detection, personalized content and intelligent bots, LiveOps and content delivery-

the cloud streamlines the entire distribution process for developers it simplifies deploying updates and new content

globally while relying on Content Delivery Networks (CDNs) to handle the fast and reliable delivery of game assets to

all players, enhanced security- CSPs invest heavily in their security offering strong protection again DDoS like attacks

which can break games and entire servers, CSPs also provides tools like IAMs (Identity and Access Management) for

managing players identity as well securing data. (31)

6.1.2 Serverless Game Development

Let’s go through most popular service provider as almost all CSPs (Cloud Service Provider) provide almost identical

services at identical price bracket which is AWS (Amazon Web Services) , serverless game development is an

approach where game developers utilize cloud services to build and run the backend part of the games without needing

to manage underlying physical server infrastructure themselves. This means developers can focus on game’s important

parts such as features and logics while a CSP manages all the provisioning, scaling and maintenance of servers, the core

idea here is to move away from traditional or dedicated servers and instead use models proposed by CSP such as Pay-

As-You-Go where developers are only billed for computing resources which they are consuming. CSP provide high

scalability means developers does not have to worry whether they require more computational resources for certain

tasks or less resources as this model bills only for consumed resources and CSPs provide those resources on demand

with 99.999999% uptime, key components which a developer can utilize from serverless game development are APIs-

An Application Programming Interface (API) such as Amazon API Gateway is used to allow the game client to

communicate with the backend services in the cloud, CSPs- companies like AWS, GCP, Azure provide wide range of

services such as computing, storage and databases, automation and scalability- high availability is achieved through

automated resource scaling where the cloud infrastructure dynamically adjusts its capacity to meet real time player

demand which is crucial for any game as player base or concurrent players can be pretty unpredictable. (32)

VII. SECURITY CHALLENGES

As the gaming industry is rising and evolving, security challenges are lurking in background there is no drought that

hackers/attackers are getting attracted by the financial growth which indicates a posing threat. The huge popularity and

financial values of games makes it prime target for attackers to exploit its vulnerabilities. In game items and players

data hold crucial value in real world, creating opportunity for attackers to make profits from stolen data, due to high

stakes developers must implement multiple security measures to protect players from such attacks whereas cheats and

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12884

hacks in games can also lead to unfair advantages for individuals, player accounts can be compromised by methods like

social engineering and manipulating unencrypted data. Although the implementation of cloud tightened the security an

attacker always finds ways to exploit let’s get through some attacks and their countermeasures for better understanding.

7.1 Types of attacks

Various types of attacks are used by attacker to steal players data as well as to cheat in games some of the attacks are

social engineering attack- hackers lure players/users to reveal their credentials to gain unauthorized access, brute force

attack- it’s used to crack passwords players weak password make this attack strong, DDoS(Distributed Denial of

Service)- This attack is used on servers specially used to disrupt the gameplay giving unfair advantage to attacker,

cheating-exploiting game bugs, modifying game files basically gaining advantages that are not permitted by game

rules, Malicious Software-It includes distributing malicious software with game clients to infect user devices usually it

happens when game is pirated, Server Hacks-It involves altering game servers to alter gameplay.

7.2 Countermeasures for Hacks

Game developers actively fight cheating and cyberattacks using a variety of tools, these countermeasures operate both

actively and passively during gameplay to ensure security such as Tracking Movement-By monitoring players

movement fluctuations caused by cheats such as “Wall Hacks” are identified to distinguish between legit player and

cheater, Using Machine Learning-ML is popular nowadays with its implementation for cheat detection can enhance the

efficiency of identifying cheaters, Role of Patches-Pushing patches frequently serves as reactive approach to security,

patches can be applied on both client as well as actual game servers to rectify bugs and security gaps eventually

stopping cheaters from exploiting loopholes, Security Layers-Implementation of multiple security layers reduces the

penetration time giving time to find balance between security measures, Role of Cloud-cloud CSPs provide protection

against DDoS like attacks and has exceptionally high disaster recovery which will help strengthen security.

7.3 History of attacks

To get better understanding of potential threat of security in gaming we will investigate few cases where gaming

industry took huge loss due to compromised security

7.3.1 Grand Theft Auto Breach via Social Engineering

In September 2022, A 17-year-old hacker known as “Teapot” was responsible for major security breach demonstrating

the power of social engineering, he impersonated an IT staff member within the company which lead to leak 90+

videos of early development of GTA VI.

7.3.2 Sony PlayStation Network Hack

In 2011, this hack impacted 77 million users, exposing personal data like names, birthdate, email, addresses, usernames

and hashed passwords where Sony implemented automated monitoring, data protection, encryption and firewalls after

the breach.

7.3.3 Nintendo Security Breach

In 2013, Nintendo faced 15.46 million false login attempts against its Club Nintendo Service, they managed to fend off

most of the attempts, but 23,926 accounts were compromised.

7.4 Measures for Hack Prevention

In the gaming developers have implemented various security components to prevent security issues such as

Cryptographic System-Combining Algorithms with Encryption keys to protect data, Clockware Software- It offers

cryptographic services to game developers, Secure Networks-Its very important for minimizing risks network

components like cisco are used commonly whereas lease lines are more secure but little on expensive side, DRM

(Digital Rights Management)- It controls access helping developers to combat piracy steam like platforms are

commonly used, Authentication Measures- MFA (Multi Factor Authentication), 2FA, 3FA are used to protect user

credentials.

Additionally, Multiple security components should be integrated to create a robust security policy, considering

interactions between them and developers must focus on advanced security components and policies to enhance game

security. (33)

VIII. REVENUE GENERATION AND IMPACTS

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12885

As we all aware of no industry can work without money after all it’s the deciding factor whether something is worth

doing or not generating revenue is part of every industry gaming is no different but the tactic’s, gaming industry is

generating ton load of money in recent years.

8.1 Revenue Models

There has been huge change in how gaming industry generates revenue moving from one time purchase to more

recurring and dynamic revenue models, this advancement happened due to players changing prospective and

technological advancements. Traditionally we used Methods like Pay-Per-Play: This simple model was used in 1980s

for arcade machines. One-Time-Purchase: with the advancement of consoles industry shifted to this model where

players would buy cartages and CDs of games providing single way of revenue generation by retail sale of physical

copies of games.

In early 2000s gaming industry saw the rapid growth of Internet which enables Digital distribution of games model

which began with PC games then slowly onto consoles, on the other hand this transformation created another revenue

opportunity called DLC (Downloadable Content) which allowed developers to sell post-launch content encompassed a

wide spectrum of additions from cosmetics to new stories which then the charges for DLC and small purchases of in-

game content led to the term “Microtransactions” which means small transactions made with in-game currency.

Microtransactions enabled hybrid revenue model (Dual Model) layering ongoing revenue from small in-game sales on

top of a game's upfront cost, after which another model was introduced live service or Free-To-Play model where the

revenue generation only be done by microtransactions making the game free, beyond microtransactions some

publishers offered subscription models where player would pay monthly fees to access and play wide variety of games

in this model players no need to purchase or own any games to play them this access is managed through GaaS (Game

as a Service) when we combine subscription with microtransactions it creates Hybrid Subscription model allowing

game developers to generate more revenue. (34)

8.1.1 Digital Gaming Industry

Digital gaming industry is not just game or software’s it’s an unique blend of entertainment with information and

communication technology (ICT), unique characteristics differentiate video games from standard software

development, the gaming industry shares in common with entertainment and publishing sectors rather than fully being

software business there are majorly three types of markets and gaming industry has, Mobile gaming can also called as

casual gaming and the gameplay can be simple whereas PC and Consol Gaming mainly require heavy upfront costs due

to its high initial cost players are more likely perform large transactions.

8.1.2 Platforms

In game industry Video Game platforms play important role in revenue generation, players get more attracted towards a

platform which has huge library of titles to play, also there is a hardware sales strategy with which the consoles are sold

in loss and profit is made from sales of digital games and from developers as licensing fees this shows the importance

of game platforms ecosystem in industry’s revenue.

Hardware Platforms

In the world of gaming hardware platforms play important role in game’s release as well as SDK (Software

Development Kit) sales, consol gaming market is mainly owned by Nintendo, Microsoft and Sony these platform

holders exert considerable influence by wielding authority that which game will release when and providing SDK to

chosen certain developers which effectively creates an oligopoly in the hardware market. Unlike Console market

hardware platforms are more centralized in PC gaming where the constitutes the platform rather than specific consol in

result an PC game can be run on different hardware’s making it more accommodating to different types of hardware’s

as well as performance.

Software Platforms

The choice of software platform is fundamental to a game's performance and overall capabilities, Games as a

software’s rely on Operating Systems to function where Windows being the most optimal for gaming for a game to be

hit it must support at least popular operating systems, aside from OS games need Additional Software Components like

DirectX, NVIDIA like API bundles to enhance performance and enable advanced features, games often include

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12886

middleware’s like Game Engines to perform tasks like implementing AI, simulating 3D physics, and handling graphics.

A game’s technical quality such as graphics, sound to performance all depends on software making optimization and

compatibility essential for a game developer to attract more player base. (35)

IX. CONCLUSION

This research confirms that the game development industry has undergone a dramatic transformation driven by a rapid

evolution from traditional development techniques to sophisticated new algorithms and dynamic revenue models, our

investigation reveals a clear industry shift from the Waterfall model to agile methodologies like Game Scrum enabling

developers to adapt to market feedback additionally the rise of PCG algorithms demonstrates a move towards

automating logical tasks thereby elevating the role of creative direction in a project's success a primary limitation of

this study is its broad scope which prevented an in-depth analysis of specific complex algorithms, Such as learned

motion matching and NPC behavior. Future research can be done to focus on the impact of Machine learning in this

field which will provide deeper understanding eventually as game development industry is growing rapidly a broad

understanding of these evolving technologies is no longer just an academic chase but a critical prerequisite for aspiring

developers aiming to innovate and compete.

REFERENCES

1) Nylund, A., & Landfors, O. (2015). Frustration and its effect on immersion in games: A developer viewpoint on

the good and bad aspects of frustration.

2) Starks, K. (2014). Cognitive behavioral game design: a unified model for designing serious games. Frontiers in

psychology, 5, 28.

3) Kammonen, E. (2025). Progression systems in roguelite games.

4) Zohaib, M. (2018). Dynamic difficulty adjustment (DDA) in computer games: A review. Advances in Human‐
Computer Interaction, 2018(1), 5681652.

4) Chen, M., Elmachtoub, A. N., & Lei, X. (2021). Matchmaking strategies for maximizing player engagement in

video games. Available at SSRN 3928966.

5) Unreal Engine 5 empowers all creators across all industries to deliver stunning real-time content and experiences.

6) Create high-quality graphics and stunning visuals | Unity HDRP. (n.d.). Unity.

7) Engine, G. (n.d.). Godot 4.0 sets sail: All aboard for new horizons – Godot Engine. Godot Engine.

8) Godoy, A., & Barbosa, E. F. (2010). Game-Scrum: An approach to agile game development. Proceedings of

SBGames, 292-295.

9) Slusallek, P., Shirley, P., Mark, W., Stoll, G., & Wald, I. (2005). Introduction to real-time ray tracing. In ACM

SIGGRAPH 2005 Courses (pp. 1-es).

10) Watson, A. (2020). Deep learning techniques for super-resolution in video games. arXiv preprint

arXiv:2012.09810.

11) Li, T. (2024). Real–time performance comparison of environments created using traditional geometry rendering

versus unreal nanite technology in virtual reality (Master's thesis, Purdue University).

12) Chen, S. (2024). Literature review of application of AI in improving gaming experience: NPC behavior and

dynamic difficulty adjustment.

13) Backman, A., Bodin, K., Lacoursière, C., & Servin, M. (2012). Democratizing cae with interactive multiphysics

simulation and simulators. In NAFEMS NORDIC Conference: Engineering Simulation: Best Practices, New

Developments, Future Trends, 22-23 May 2012, Gothenburg, Sweden.

14) Shaker, N., Togelius, J., & Nelson, M. J. (2016). Procedural content generation in games.

15) Lehmusvuori, L. (2024). Rollback netcode ja sen käyttö.

16) Sanjaya, K., Chandra, R., & Jose, J. (2023). The digital gaming revolution: An analysis of current trends, issues,

and future prospects. Russian Law Journal, 11(1), 18-29.

17) Nylund, A., & Landfors, O. (2015). Frustration and its effect on immersion in games: A developer viewpoint on

the good and bad aspects of frustration.

17) Seabra, M., Fernandes, F., Simões, D., & Madeiras, J. (2023). Position Based Rigid Body Simulation: A

comparison of physics simulators for games. Computer Science Research Notes, 31(1-2), 351-360.

http://www.ijarcst.org/
mailto:editor@ijarcst.org

 International Journal of Advanced Research in Computer Science & Technology (IJARCST)

 | ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

 ||Volume 8, Issue 5, September-October 2025||

 DOI:10.15662/IJARCST.2025.0805016

IJARCST©2025 | An ISO 9001:2008 Certified Journal | 12887

18) Mbayburt, M. (2023, October 8). Walkthrough of the GJK collision detection algorithm. Medium. Retrieved

September 7, 2025, from https://medium.com/@mbayburt/walkthrough-of-the-gjk-collision-detection-algorithm-

80823ef5c774

19) Greige, L., Silva, F. D. M., Trotter, M., Lawrence, C., Chin, P., & Varadarajan, D. (2022). Collusion detection in

team-based multiplayer games. arXiv preprint arXiv:2203.05121.

20) Huynh, J. (2009). Separating axis theorem for oriented bounding boxes. URL: jkh. me/files/tutorials/Separating%

20Axis% 20Theorem% 20for% 20Oriented% 20Bounding% 20Boxes. pdf.

21) McCollum, J. (2023, April 19). An introduction to Utility AI. Shaggy Dev.

22) Świechowski, M., Godlewski, K., Sawicki, B., & Mańdziuk, J. (2023). Monte Carlo tree search: A review of
recent modifications and applications. Artificial Intelligence Review, 56(3), 2497-2562.

23) Van Toll, W. G., Cook IV, A. F., & Geraerts, R. (2012). A navigation mesh for dynamic environments. Computer

Animation and Virtual Worlds, 23(6), 535-546.

24) Holden, D., Kanoun, O., Perepichka, M., & Popa, T. (2020). Learned motion matching. ACM Transactions on

Graphics (ToG), 39(4), 53-1.

25) Cadevall Soto, L. (2021). Procedural generation of animations with inverse kinematics.

26) Sandhu, A., Chen, Z., & McCoy, J. (2019, August). Enhancing wave function collapse with design-level

constraints. In Proceedings of the 14th International Conference on the Foundations of Digital Games (pp. 1-9).

27) Hossain, A. (2025). The Battle Against Cheating: How Anticheat Systems Shape Gaming. Computer Science.

28) Nordström, O., & Raivio, L. (2023). Performance evaluation of multithreading, hashtables, and anonymous

functions for rust and c++: in game development.

29) Bjarnason, A., & Reynisson, J. M. (2021). Deeper: adventures in procedural game development in Rust (Doctoral

dissertation).

30) Relvas, A. M. D. S. R. D. M. (2021). The impact of cloud gaming in the videogame industry (Doctoral

dissertation, Instituto Superior de Economia e Gestão).

31) Cai, W., Shea, R., Huang, C. Y., Chen, K. T., Liu, J., Leung, V. C., & Hsu, C. H. (2016). A survey on cloud

gaming: Future of computer games. IEEE access, 4, 7605-7620.

32) Lampela, J. (2024). The Use of Cloud Services in Serverless Game Development.

33) Parizi, R. M., Dehghantanha, A., Choo, K. K. R., Hammoudeh, M., & Epiphaniou, G. (2019). Security in online

games: Current implementations and challenges. In Handbook of big data and IoT security (pp. 367-384). Cham:

Springer International Publishing.

34) Alcazar, J., & Baird, S. (2025). Game Changer: The Evolution of Video Games’ Payments

Infrastructure. Payments System Research Briefing, Federal Reserve Bank of Kansas City, 1-7.

35) Majander, V. (2019). Revenue models for video games.

http://www.ijarcst.org/
mailto:editor@ijarcst.org
https://medium.com/@mbayburt/walkthrough-of-the-gjk-collision-detection-algorithm-80823ef5c774
https://medium.com/@mbayburt/walkthrough-of-the-gjk-collision-detection-algorithm-80823ef5c774

