International Journal of Advanced Research in Computer Science & Technology (IJARCST)

e R P,

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|
|IVolume 6, Issue 1, January-February 2023||

DOI:10.15662/1JARCST.2023.0601003

Structuring Reusable API Testing Frameworks
with Cucumber-BDD and REST Assured

Chiranjeevulu Reddy Kasaram
Independent Researcher, USA
chiran.reddyl6@gmail.com

ABSTRACT: API testing is central to ensuring the reliability and stability of modern service-driven applications, yet
many automation solutions become brittle and difficult to maintain as systems evolve. This paper presents an
architectural approach for building reusable and scalable API testing frameworks by integrating Cucumber-BDD with
REST Assured. Leveraging Cucumber’s Gherkin language for business-readable specifications and REST Assured’s
fluent DSL for HTTP request validation, the proposed layered architecture separates feature definitions, step
implementations, and reusable service components. This design enables reusability, minimizes code duplication, and
supports maintainability by isolating changes to specific modules. By aligning business requirements with technical
execution, the framework enhances readability, accelerates onboarding, and ensures portability across environments
and CI/CD pipelines. The result is a sustainable approach to API test automation that balances expressiveness, technical
rigor, and long-term maintainability

KEYWORDS: API testing, Cucumber-BDD, REST Assured, test automation, scalability
I. INTRODUCTION

The combination of Cucumber-BDD and REST Assured would require a properly organized structure to create reusable
and maintainable API test automation. The architecture uses the Gherkin language of Cucumber to establish executable
specifications, which can be read and understood by humans, to bridge the communication gap between the technical and
non-technical stakeholders [3]. These behavioural scenarios are then converted into specific actions via the REST
Assured potent, fluent DSL of making HTTP requests and making assertions [1]. A layered architecture is essential to
achieve maximum reusability with the separation of the test specification (feature files), glue code(step definition), and
reusable service layer component which defines API interactions. With strong models of request/response payloads, this
design guarantees that modifications of the API contract need to make the least changes in the codebase, which facilitates
scalability and simple maintenance in an agile/cloud-based setup [1], [4].

11. BACKGROUND CONCEPTS: CUCUMBER-BDD AND REST ASSURED

The suggested framework is effective due to the two basic technologies being combined synergistically, specifically,
Cucumber to Behaviour-Driven Development (BDD) and REST Assured to the API interaction. BDD is an integrated
practice that builds on Test-Driven Development (TDD) by writing tests that are expressed in a common language that
can be understood by all project stakeholders, therefore taking development efforts into consideration of the intended
business results [4]. Cucumber implements BDD by supporting the Gherkin language a plain-text based, simple and
structured syntax of Given, When, and Then steps specifying application behaviour in plain-text feature files. This takes
test cases and turns them into executable specifications which can be used both as documentation and as verification
suites [5].

Complementing this, REST Assured is a Java DSL designed specifically for simplifying the testing of REST-based
services. It provides a highly expressive, fluent interface that allows testers to craft complex HTTP requests—including
setting headers, parameters, and body content—and to validate responses with powerful assertions, all in a manner that
reads like a natural language sentence [1]. Its deep integration with Groovy enables elegant parsing and navigation of
JSON and XML response structures, eliminating the need for verbose boilerplate code.

The true power emerges when these tools are integrated. Cucumber’s Gherkin scenarios define the what—the expected

behaviour of the API from a functional perspective. REST Assured, invoked within the step definitions, implements the
how—the technical execution of the HTTP calls and validations. This clear separation of concerns is the bedrock upon

IJARCST©2023 | AnI1SO 9001:2008 Certified Journal | 7626

International Journal of Advanced Research in Computer Science & Technology (IJARCST)

e R P,

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|
|IVolume 6, Issue 1, January-February 2023||
DOI:10.15662/IJARCST.2023.0601003

which a reusable and maintainable framework is built, ensuring that business logic remains distinct from the underlying
technical implementation [7].

I11. THE PILLARS OF A REUSABLE FRAMEWORK ARCHITECTURE

Before delving into implementation, it is crucial to define the core architectural principles that guide the framework’s
design. A reusable API testing framework must be constructed with specific, non-negotiable pillars in mind to avoid the
common pitfalls of brittleness and high maintenance. These pillars ensure the framework’s longevity and Return on
Investment (ROI) as the application under test evolves.

The primary goal is Reusability, which dictates that code components should be written once and utilized across multiple
test scenarios. This is achieved by abstracting common operations, such as authentication or request specification
building, into shared modules, preventing costly code duplication [1]. Directly tied to this is Maintainability. A well-
architected framework ensures that a change in the API contract—such as a new mandatory header or a modified
endpoint—requires a change in only one location within the codebase, significantly reducing effort and risk [2].

Furthermore, the framework must champion Readability and Clarity. The use of Cucumber-BDD inherently addresses
this at the specification level, but the underlying code must also be clean and intuitive. This allows new team members to
onboard quickly and makes test debugging a more straightforward process [5]. Finally, the architecture must be Scalable
and Portable. It must support a growing number of tests and APIs without a degradation in performance or organization,
and it must be easily executable across different environments (e.g., development, staging, production) and within CI/CD
pipelines without modification [1], [4].

TABLEI. COMPARISON OF DATA REQUIREMENTS: TRADITIONAL VS. AGENTIC Al SYSTEMS

Pillar Description Key Benefit
Reusability Designing Reduces code
components (e.g., duplication,
request builders, accelerates test
utility functions) script
for broad development.

consumption
across tests.

Maintainability | Isolating volatile Minimizes the
code (e.g., impact of API
endpoints, changes, lowering

headers) into long-term

centralized, single- | maintenance costs.
responsibility

classes.
Readability Combining Enhances
Gherkin's business | collaboration and
language with simplifies
well-named, debugging and
logical code review processes.
structures.
Scalability Structuring the Supports an
framework in expanding test
discrete layers to suite efficiently
manage without structural
complexity and overhaul.
growth.

Deep Dive: Critical Components and Technologies

IJARCST©2023 | AnI1SO 9001:2008 Certified Journal | 7627

International Journal of Advanced Research in Computer Science & Technology (IJARCST)

e R P,

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|
|IVolume 6, Issue 1, January-February 2023||
DOI:10.15662/IJARCST.2023.0601003

Translating the theoretical pillars of reusability, maintainability, and scalability into a practical, implementable system
requires a deliberate and layered architectural approach. This structure is paramount, as it enforces a clean separation of
concerns, ensuring that each component within the framework has a single, well-defined responsibility. The proposed
blueprint, visualized in Figure 1, consists of four distinct layers—each building upon the one below it—and a supporting
infrastructure that enables cross-cutting functionality. This hierarchy is designed to isolate volatility, promote code reuse,
and create a sustainable ecosystem for test development that can evolve alongside the application it validates [1], [5].

Step Definition +
API Testing

Feature File (Java, TestRunner Cucumber ‘

(Gherkins) Rest-Assured, (Junit) Reports
Junit,

e Cucumber) 4

Figure 1. The layered architecture of a Cucumber-REST Assured testing framework, depicting the flow from business-
readable features to executable code

Layer 1: The Core Framework Layer
This foundational layer houses all low-level, reusable components that are entirely agnostic to specific APl endpoints or
business logic. Its stability is critical, as changes here can ripple throughout the entire framework.

* Request Specification Builder: This is perhaps the most crucial component for ensuring maintainability. A central
class (e.g., RequestSpecBuilder) is responsible for constructing and pre-configuring all HTTP requests. It encapsulates
volatile and common configurations such as the base URI, default headers (e.g., Content-Type: application/json),
authentication mechanisms (e.g., adding Oauth2 tokens or API keys), proxy settings, and logging preferences. By
serving as the single source of truth for request configuration, a modification like a new mandatory authentication header
requires a change in only this one location, instantly propagating the update to every test in the suite [1]. This design
directly combats test brittleness.

» Data Model Classes (POJOs/Java Records): These classes provide a type-safe, object-oriented representation of the
JSON or XML request payloads and response objects exchanged with the API. Using Plain Old Java Objects (POJOs)
annotated with Jackson or modern Java Records, testers can model API entities like User, Product, or Order. This
approach eliminates the brittleness and verbosity of manually constructing JSON strings and parsing responses using
complex, string-based JSONPath queries. A library like Jackson handles the serialization (Java object to JSON) and
deserialization (JSON to Java object) seamlessly, leading to cleaner, more reliable, and more readable code [5]. For
instance, asserting response.getUser().getFirstName() is far more intuitive than
response.jsonPath().getString(“user.firstName”).

« Utility Classes: A suite of helper classes provides common, cross-cutting functionalities. This includes a
ConfigReader to parse environment-specific properties from files (e.g., dev.properties, prod.properties), a
TestDataGenerator using libraries like Java Faker to create dynamic and random test data, and custom assertion classes
that extend REST Assured’s validation capabilities for complex, multi-field response validations.

TABLE Il. RAGPROCESS FOR AFINANCIAL ANALYST AGENT

Component Primary Responsibility Example

RequestSpecBuild | Pre-configures all HTTP RequestSpecification requestSpec = new

er requests with base settings | RequestSpecBuilder().setBaseUri(config.getBaseUrl()).addHeader
(URI, auth, headers). ("Authorization", "Bearer " + token).build();

User.java (Record) | Models the structure of a public record User(int id, String name, String email, String
User entity for password) {}
request/response payloads.

IJARCST©2023 | AnI1SO 9001:2008 Certified Journal | 7628

International Journal of Advanced Research in Computer Science & Technology (IJARCST)

e R P,

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|
|IVolume 6, Issue 1, January-February 2023||

DOI:10.15662/1JARCST.2023.0601003

ConfigReader.java | Reads parameters (e.qg., String baseUrl = ConfigReader.getProperty(“api.base.url");
URLs, credentials) from
external .properties or .yaml

files.

TestDataGenerator | Generates dynamic, random | String randomEmail =

java data for test inputs to ensure | TestDataGenerator.generateRandomEmail(); // e.g.,
uniqueness. "user_123@test.com"

Layer 2: The Helper/Service Layer

The layer serves as an inseparable point between the generic basic utilities and the particular stages of the tests. It wraps
all the communication with certain API endpoints into service client classes that can be reused without considering the
technicalities of HTTP in the application of the test logic itself [2], [7].

« Purpose and Implementation: API resources (e.g. User, Product, Order) are assigned to services which represent their
classes (e.g. UserAPIService). These classes provide advanced techniques to all the operations which can be performed
on that resource, i.e, createUser(User user), getUserByld(int id), and updateUser(int id, User user). Within these
techniques, the REST Assured code is coded, using the ready-to-use RequestSpecification of Layer 1 and returning the
API Response or a deserialized POJO.

Advantages:

This abstract is strong. It implies that the step definitions in Layer 3 are made extremely thin, declarative, and behavior-
oriented, instead of implementation-oriented. These service methods are merely called with ready data. This layer
includes all the complex code of the REST Assured - the construction of the endpoint URL, selecting the HTTP method,
and body, and the implementation of the request. This allows the service techniques to be extremely reusable in a variety
of test cases and protect the test cases against modifications in the APl HTTP interface.

Layer 3: The Step Definitions Layer
This layer contains the “glue” code that maps the natural language Gherkin steps from the feature files to executable Java
code. Each Given, When, and Then step has a corresponding method that implements its intent.

* Implementation: Step definition methods should be concise. Their primary role is to extract parameters from the
Gherkin step, potentially transform them into POJOs, call the appropriate method in the Service Layer (Layer 2), and
store responses or perform assertions on return values. They translate the “what” into “how” by delegating the actual
work to the layers below.

« Data Handling: This layer efficiently leverages Cucumber’s DataTable and Scenario Outline with Examples tables. It
transforms the tabular data provided in the feature files into Java objects (e.g., List<Map<String, String>> or custom
POJOs) that can be passed directly to the service layer, enabling data-driven testing at its most effective [5].

Layer 4: The Gherkin Feature Files Layer

» This is the topmost and most visible layer, consisting entirely of .feature files written in the Gherkin language. These
files are purposefully devoid of any technical implementation details and are written in a domain-specific language
accessible to business stakeholders, product owners, manual testers, and developers alike [3], [6].

» Content and Role: Each file describes a software feature and contains multiple scenarios and scenario outlines that
define the expected behavior of the system using real-world examples. The language focuses on user goals and system
outcomes rather than technical endpoints and request methods. This layer serves as the single source of truth for the
system’s intended behavior, functioning simultaneously as executable acceptance criteria and as living, up-to-date
documentation. The success of this layer is measured solely by its clarity and readability for non-programmers, ensuring
that the framework truly embodies the collaborative spirit of BDD [4], [6].

IV. IMPLEMENTATION IN PRACTICE: A WALKTHROUGH
To illustrate the practical application of the layered architecture, consider a common test scenario: “Successfully create a

new user.” This walkthrough demonstrates how the four layers interact, showcasing the separation of concerns and the
flow from a business-readable specification to a technical execution.

IJARCST©2023 | AnI1SO 9001:2008 Certified Journal | 7629

International Journal of Advanced Research in Computer Science & Technology (IJARCST)

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

|IVolume 6, Issue 1, January-February 2023||
DOI:10.15662/IJARCST.2023.0601003

The process begins at the highest layer of abstraction. A tester or product owner writes the requirement in Gherkin,
focusing on the behavior, not the implementation. This is stored in a user_management.feature file.

gherkin

Scenario Outline: Creating a new user via the API
Given I have a valid user payload for

<name>" and “<email>
When I submit a POST request to the

s“ endpoint
Then the response status code should be 201

And the response body should contain the user

id and "<email>
Examples:
| name email

|
| John Doe john.doe@test.com |
|

| Jane Smith| jane.smith@test.com

Figure 2. Gherkin (Layer 4)

This scenario outline is parsed, and Cucumber matches each step to its corresponding method in the step definitions

class. The step definitions act as the glue, extracting the data from the Gherkin step and delegating the actual API
interaction to the service layer.

java

public class UserStepDefinitions
private User testUser
private Response apiResponse;

Given("I have o valid user payload for {string)

void create_user._ sd(String name

Figure 3. Step Definitions (Layer 3)

The UserAPIService in the service layer (Layer 2) contains the actual REST Assured code. It uses the core
RequestSpecBuilder from Layer 1 to ensure the request is properly configured and executes the call.

java
public class UserAPIService

public static Response createUser(User userPayload)
return given()

.spec(RequestSpecBuilder.getRe
.body(userPayload) // Layer 1

stSpec()) // Layer 1
POJO serialized to JSON

post("/users”)
then()
extract()

response() ;

Figure 4. Service Layer (Layer 2)

TABLE Ill. LAYER INTERACTION FOR THE "CREATE USER" FLOW
Layer Component Action
4. Gherkin | user_management.feature Defines the
business
behavior and
test data.
3. Step UserStepDefinitions Translates

IJARCST©2023 | AnI1SO 9001:2008 Certified Journal | 7630

International Journal of Advanced Research in Computer Science & Technology (IJARCST)

e R P,

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|
|IVolume 6, Issue 1, January-February 2023||

DOI:10.15662/1JARCST.2023.0601003

Definitions Gherkin steps;
prepares data
and makes
service calls.
2. Service UserAPIService Encapsulates
Layer the API
endpoint logic
using REST
Assured.

1. Core RequestSpecBuilder, User | Provides base
Framework POJO request config
and data
models.

V. ADVANCED CONSIDERATIONS FOR A PRODUCTION-READY FRAMEWORK

While the core layered architecture provides a solid foundation, deploying a framework into a continuous
integration/continuous deployment (C1/CD) pipeline demands addressing advanced considerations that ensure reliability,
efficiency, and robustness in a production environment.

A critical enhancement is externalized configuration management. Hardcoding environment-specific variables (e.g., base
URLSs, credentials) is a fatal flaw for portability. A production-grade framework must read these parameters from
external configuration files (e.g., .properties, .yaml) or environment variables. This allows the same test codebase to
execute seamlessly against different environments—such as development, staging, and production—without any
modification, simply by switching the active profile [1], [5]. Furthermore, secure handling of secrets, such as API keys
and passwords, is paramount. These should never be stored in version control but instead be injected at runtime through
secure vaults or CI/CD pipeline variables.

The other critical factor is advanced test data management. The tests are to be isolated and idempotent and thus they
should be able to execute on their own and can be reused over and over again without leading to failure because of
collision of data. One such approach is the programmatic generation of prerequisite data in the Before hook and the
careful cleanup of artifacts (e.g. deletion of test users) in the After or AfterAll hook to ensure a clean test environment
[2]. In the case of data-driven testing, the creation of unique and random data at each test execution with the help of such
libraries as Java Faker avoids conflicts and guarantees the reliability of the tests.

Last but not least, the framework has the most value to offer when integrated into a CI/CD pipeline. Such tools as
Jenkins, GitHub Actions or GitLab CI can be specified to automatically run the test suite on events such as a pull request
or a nightly build. Organizing the framework to run tests concurrently, taking advantage of such tools as parallel
execution offered by Cucumber or parallel execution offered by JUnit, makes the feedback time significantly smaller,
making the pipeline efficient and agile [4]. This is a continuous automated testing that offers a vital safety net to
deployment, where code integrations are not permitted to affect current functionality of the API.

REFERENCES

[1] B. G. Wolde and A. S. Boltana, “REST API composition for effectively testing the Cloud,” Journal of Applied
Research and Technology, vol. 19, no. 6, pp. 676-693, Dec. 2021, doi: 10.22201/icat.24486736€.2021.19.6.1653.

[2] N. Palani, Software Automation Testing Secrets Revealed: Revised Edition-Part 1. Delhi, India: Educreation
Publishing, 2017.

[3] V. Osterholm, “Overview of Behaviour-Driven Development tools for web applications,” M.S. thesis, Dept.
Comput. Sci., KTH Royal Institute of Technology, Stockholm, Sweden, 2021. [Online]. Available:

[4] B. G. Wolde and A. S. Boltana, “Behavior-driven quality first Agile testing for cloud service,” International Journal
of Software Engineering & Applications, vol. 12, no. 1, pp. 13-27, Jan. 2021, doi: 10.5121/ijsea.2021.12102.

[5] P. A. Chaubal, Mastering Behavior-Driven Development Using Cucumber: Practice and Implement Page Object
Design Pattern, Test Suites in Cucumber, POM TestNG Integration, Cucumber Reports, and Work with Selenium Grid.
India: BPB Publications, 2021.

IJARCST©2023 | AnI1SO 9001:2008 Certified Journal | 7631

International Journal of Advanced Research in Computer Science & Technology (IJARCST)

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal|

|IVolume 6, Issue 1, January-February 2023||

DOI:10.15662/1JARCST.2023.0601003

[6] I. Necas, “BDD as a specification and QA instrument,” M.S. thesis, Faculty of Informatics, Masaryk University,
Brno, Czech Republic, 2011.

[7] R. B. Bahaweres, E. Oktaviani, L. K. Wardhani, I. Hermadi, A. Suroso, I. P. Solihin, and Y. Arkeman, “Behavior-
driven development (BDD) Cucumber Katalon for Automation GUI testing case CURA and Swag Labs,” in 2020
International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), Jakarta, Indonesia.
[8] N. Li, A. Escalona, and T. Kamal, “Skyfire: Model-based testing with cucumber,” in 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST), Chicago, IL, USA, Apr. 2016, pp. 393-400, doi:
10.1109/1CST.2016.42.

IJARCST©2023 | AnI1SO 9001:2008 Certified Journal | 7632

