

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 6, Issue 6, November-December 2023||

DOI:10.15662/IJARCST.2023.0606009

AI-Driven Oracle EBS Framework for Cloud-Enabled Banking Ecosystems: Enhancing Financial Intelligence through Cloud Computing Integration

Liam Jacob van der Merwe

Software Developer, South Africa

ABSTRACT: The rapid evolution of cloud computing and artificial intelligence (AI) is reshaping the digital banking landscape by enabling more intelligent, scalable, and adaptive enterprise systems. This paper presents an AI-driven Oracle E-Business Suite (EBS) framework designed for cloud-enabled banking ecosystems to enhance financial intelligence, operational agility, and data-driven decision-making. The proposed framework integrates Oracle EBS with AI-powered analytics, Natural Language Processing (NLP), and cloud-native architectures to facilitate real-time financial insights, predictive risk management, and intelligent process automation. Leveraging hybrid cloud infrastructure and machine learning algorithms, the framework improves transaction accuracy, fraud detection, and compliance reporting while reducing latency in financial operations. Furthermore, the system employs API-based microservices for seamless interoperability across Oracle EBS modules and third-party fintech solutions. Experimental evaluation demonstrates improved system scalability, performance efficiency, and financial data integrity. This research highlights how cloud-enabled AI integration within Oracle EBS can redefine digital transformation strategies in the banking sector by enabling intelligent automation, predictive analytics, and cognitive financial ecosystems.

KEYWORDS: AI-Driven Oracle EBS, Cloud Computing, Financial Intelligence, Banking Ecosystem, Natural Language Processing (NLP), Predictive Analytics, Machine Learning, Cloud-Native Architecture, Intelligent Automation, FinTech Integration, Hybrid Cloud, Cognitive Banking, Data-Driven Decision Making.

I. INTRODUCTION

The integration of artificial intelligence (AI) into pediatric healthcare systems offers transformative potential in enhancing diagnostic accuracy, optimizing treatment plans, and improving patient outcomes. However, the unique physiological and developmental characteristics of children necessitate specialized approaches in AI model development and deployment. Traditional healthcare systems often face challenges such as data silos, inefficient workflows, and limited scalability, which can impede the delivery of timely and effective care.

Cloud-native architectures provide a robust solution to these challenges by offering scalable, flexible, and secure platforms for healthcare applications. These architectures enable seamless integration of various healthcare services, real-time data processing, and compliance with regulatory standards. Moreover, the adoption of secure data monetization strategies ensures that healthcare data can be utilized for research and development purposes while maintaining patient privacy and consent.

In medical imaging, particularly in pediatric care, image quality is paramount for accurate diagnosis. AI-driven image denoising techniques have shown promise in enhancing image clarity, thereby aiding clinicians in making precise assessments. By incorporating these techniques into the healthcare ecosystem, the proposed framework aims to improve diagnostic workflows and reduce the risk of misdiagnosis.

This paper explores the design and implementation of a scalable AI framework that integrates cloud-native development, secure data monetization, and advanced image denoising to modernize pediatric healthcare systems. The subsequent sections delve into a comprehensive literature review, research methodology, advantages and disadvantages, results and discussion, conclusion, and future work.

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 6, Issue 6, November-December 2023||

DOI:10.15662/IJARCST.2023.0606009

II. LITERATURE REVIEW

The application of AI in pediatric healthcare has garnered significant attention in recent years. Studies have demonstrated the efficacy of machine learning models in various aspects of pediatric care, including disease prediction, treatment optimization, and patient monitoring. For instance, AI algorithms have been employed to analyze pediatric imaging data, leading to improved diagnostic accuracy and early detection of conditions such as pediatric cancers and neurological disorders. However, the scarcity of pediatric-specific datasets poses a challenge in training robust AI models, necessitating the development of specialized datasets and transfer learning techniques.

Cloud-native architectures have emerged as a viable solution to address the scalability and flexibility requirements of modern healthcare systems. These architectures facilitate the deployment of microservices, containerization, and orchestration, enabling efficient management of healthcare applications. Moreover, cloud-native platforms support the integration of various data sources, real-time analytics, and compliance with healthcare regulations, thereby enhancing the overall healthcare delivery experience.

In the realm of medical imaging, image denoising plays a crucial role in enhancing image quality and diagnostic accuracy. Traditional denoising methods often struggle to preserve fine details in medical images, leading to potential misinterpretations. Recent advancements in AI-driven denoising techniques, such as convolutional neural networks (CNNs) and generative adversarial networks (GANs), have shown promise in effectively removing noise while retaining critical image features. These methods have been successfully applied to various imaging modalities, including X-rays, CT scans, and MRIs, demonstrating their potential in improving pediatric imaging outcomes.

Secure data monetization strategies are essential in ensuring that healthcare data can be utilized for research and development purposes without compromising patient privacy. Techniques such as data anonymization, federated learning, and homomorphic encryption have been explored to facilitate secure data sharing and analysis. These approaches enable the development of AI models that can learn from diverse datasets while adhering to stringent privacy regulations, thereby promoting the ethical use of healthcare data.

III. RESEARCH METHODOLOGY

- 1. **System Architecture Design**: The first step involves designing a cloud-native architecture that integrates various components, including data storage, processing units, AI models, and user interfaces. The architecture is designed to be modular, scalable, and compliant with healthcare regulations.
- 2. **Data Collection and Preprocessing**: Pediatric medical datasets, including imaging and electronic health records, are collected and preprocessed. This involves data cleaning, normalization, and augmentation to ensure the quality and diversity of the dataset.
- 3. **AI Model Development**: Machine learning models are developed for various tasks, including disease prediction, treatment optimization, and image denoising. These models are trained using the preprocessed datasets and evaluated based on performance metrics such as accuracy, precision, recall, and F1-score.
- 4. **Integration of Secure Data Monetization Strategies**: Techniques such as data anonymization and federated learning are implemented to enable secure data sharing and analysis. These strategies ensure that patient privacy is maintained while allowing the development of robust AI models.
- 5. **Implementation of Image Denoising Techniques**: AI-driven image denoising algorithms are integrated into the system to enhance the quality of medical images. The effectiveness of these techniques is evaluated by comparing the quality of denoised images with original and noisy counterparts using metrics such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).
- 6. **System Evaluation and Testing**: The developed system is evaluated through simulation and real-world testing. Key performance indicators, including system response time, data throughput, and diagnostic accuracy, are measured and analyzed. Feedback from healthcare professionals is collected to assess the system's usability and effectiveness in clinical settings.

Advantages

- Enhanced Diagnostic Accuracy: AI-driven image denoising improves the quality of medical images, leading to more accurate diagnoses.
- Scalability and Flexibility: Cloud-native architectures allow the system to scale according to the needs of the healthcare facility.

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 6, Issue 6, November-December 2023||

DOI:10.15662/IJARCST.2023.0606009

- Secure Data Sharing: Implementing secure data monetization strategies ensures that patient data can be utilized for research without compromising privacy.
- Improved Clinical Workflows: The integration of AI models streamlines healthcare processes, reducing bottlenecks and enhancing efficiency.

Disadvantages

- Implementation Complexity: Developing and integrating AI models into existing healthcare systems can be complex and resource-intensive.
- Data Privacy Concerns: Ensuring the privacy and security of patient data requires stringent measures and compliance with regulations.
- **Model Generalization**: AI models trained on specific datasets may not generalize well to diverse patient populations, necessitating continuous model evaluation and adaptation.

IV. RESULTS AND DISCUSSION

The implementation of the proposed AI framework resulted in significant improvements in diagnostic accuracy and clinical workflows. The integration of AI-driven image denoising techniques enhanced the quality of medical images, leading to more precise diagnoses. Secure data monetization strategies facilitated the ethical use of healthcare data, contributing to the development of robust AI models. Feedback from healthcare professionals indicated a positive reception to the system, with many expressing confidence in its ability to support clinical decision-making.

V. CONCLUSION

The proposed scalable AI framework offers a comprehensive solution to modernize pediatric healthcare systems. By integrating cloud-native development, secure data monetization, and advanced image denoising techniques, the framework addresses key challenges in pediatric care. The successful implementation and positive feedback underscore the potential of AI technologies in transforming healthcare practices.

VI. FUTURE WORK

Future research will focus on expanding the system's capabilities to include predictive analytics for patient outcomes, integration with electronic health records (EHRs), and the development of mobile applications for real-time monitoring. Additionally, efforts will be made to ensure the system's adaptability to various healthcare settings and compliance with international healthcare standards.

REFERENCES

- 1. Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in microservice architecture. 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA), 44–51. https://doi.org/10.1109/SOCA.2016.15
- 2. K. Thandapani and S. Rajendran, "Krill Based Optimal High Utility Item Selector (OHUIS) for Privacy Preserving Hiding Maximum Utility Item Sets", International Journal of Intelligent Engineering & Systems, Vol. 10, No. 6, 2017, doi: 10.22266/ijies2017.1231.17.
- 3. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
- 4. Kumar, R., Al-Turjman, F., Anand, L., Kumar, A., Magesh, S., Vengatesan, K., ... & Rajesh, M. (2021). Genomic sequence analysis of lung infections using artificial intelligence technique. Interdisciplinary Sciences: Computational Life Sciences, 13(2), 192-200.
- 5. Chen, L., Ali Babar, M., & Zhang, H. (2019). Towards an evidence-based understanding of emergent challenges of cloud-native software engineering. Journal of Systems and Software, 155, 84–100. https://doi.org/10.1016/j.jss.2019.05.041
- 6. Anand, L., Krishnan, M. M., Senthil Kumar, K. U., & Jeeva, S. (2020, October). AI multi agent shopping cart system based web development. In AIP Conference Proceedings (Vol. 2282, No. 1, p. 020041). AIP Publishing LLC.

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 6, Issue 6, November-December 2023||

DOI:10.15662/IJARCST.2023.0606009

- 7. Manda, P. (2022). IMPLEMENTING HYBRID CLOUD ARCHITECTURES WITH ORACLE AND AWS: LESSONS FROM MISSION-CRITICAL DATABASE MIGRATIONS. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 5(4), 7111-7122.
- 8. Di Francesco, P., Lago, P., & Malavolta, I. (2019). Architecting with microservices: A systematic mapping study. Journal of Systems and Software, 150, 77–97. https://doi.org/10.1016/j.jss.2019.01.001
- 9. Gai, K., Qiu, M., & Zhao, H. (2017). Security-aware efficient mass data storage and utilization in cloud computing. IEEE Transactions on Cloud Computing, 7(1), 121–131. https://doi.org/10.1109/TCC.2015.2400460
- 10. Hardin, J., Bertino, E., & Hussain, F. K. (2019). Privacy-preserving data sharing in cloud environments. Computer Standards & Interfaces, 62, 29–39. https://doi.org/10.1016/j.csi.2018.09.008
- 11. Anand, L., Nallarasan, V., Krishnan, M. M., & Jeeva, S. (2020, October). Driver profiling-based anti-theft system. In AIP Conference Proceedings (Vol. 2282, No. 1, p. 020042). AIP Publishing LLC.
- 12. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778. https://doi.org/10.1109/CVPR.2016.90
- 13. Huang, H., Yang, D., Huang, Z., & Liu, J. (2020). Medical image denoising using convolutional neural network: A review. Neurocomputing, 394, 274–288. https://doi.org/10.1016/j.neucom.2020.02.044
- 14. Archana, R., & Anand, L. (2023, May). Effective Methods to Detect Liver Cancer Using CNN and Deep Learning Algorithms. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-7). IEEE.
- 15. Begum RS, Sugumar R (2019) Novel entropy-based approach for cost- effective privacy preservation of intermediate datasets in cloud. Cluster Comput J Netw Softw Tools Appl 22:S9581–S9588. https://doi.org/10.1007/s10586-017-1238-0
- 16. Kadar, Mohamed Abdul. "MEDAI-GUARD: An Intelligent Software Engineering Framework for Real-time Patient Monitoring Systems." (2019).
- 17. Sugumar, R., Rengarajan, A. & Jayakumar, C. Trust based authentication technique for cluster based vehicular ad hoc networks (VANET). Wireless Netw 24, 373–382 (2018). https://doi.org/10.1007/s11276-016-1336-6
- 18. Kiran Nittur, Srinivas Chippagiri, Mikhail Zhidko, "Evolving Web Application Development Frameworks: A Survey of Ruby on Rails, Python, and Cloud-Based Architectures", International Journal of New Media Studies (IJNMS), 7 (1), 28-34, 2020.
- 19. Soundappan, S.J., Sugumar, R.: Optimal knowledge extraction technique based on hybridisation of improved artificial bee colony algorithm and cuckoo search algorithm. Int. J. Bus. Intell. Data Min. 11, 338 (2016)
- 20. Sangannagari, S. R. (2021). Modernizing mortgage loan servicing: A study of Capital One's divestiture to Rushmore. International Journal of Research and Applied Innovations, 4(4), 5520-5532.
- 21. Iqbal, M., & Matulevičius, R. (2020). Secure data sharing in cloud environments: A systematic literature review. Computer Science Review, 38, 100301. https://doi.org/10.1016/j.cosrev.2020.100301
- 22. Kuo, M.-H., Sahama, T., Kushniruk, A. W., Borycki, E. M., & Grunwell, D. K. (2014). Health big data analytics: Current perspectives, challenges and potential solutions. International Journal of Big Data Intelligence, 1(1–2), 114–126. https://doi.org/10.1504/IJBDI.2014.065244
- 23. Anand, L., & Neelanarayanan, V. (2019). Feature Selection for Liver Disease using Particle Swarm Optimization Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 6434-6439.
- 24. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
- 25. Batchu, K. C. (2022). Serverless ETL with Auto-Scaling Triggers: A Performance-Driven Design on AWS Lambda and Step Functions. International Journal of Computer Technology and Electronics Communication, 5(3), 5122-5131.
- 26. Prasad, G. L. V., Nalini, T., & Sugumar, R. (2018). Mobility aware MAC protocol for providing energy efficiency and stability in mobile WSN. International Journal of Networking and Virtual Organisations, 18(3), 183-195.
- 27. Shaffi, S. M. (2023). The rise of data marketplaces: a unified platform for scalable data exchange and monetization. International Journal for Multidisciplinary Research, 5(3). https://doi.org/10.36948/ijfmr.2023.v05i03.45764
- 28. Karthick, T., Gouthaman, P., Anand, L., & Meenakshi, K. (2017, August). Policy based architecture for vehicular cloud. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 118-124). IEEE.
- 29. Mahmood, F., Chen, R., & Durr, N. J. (2018). Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Transactions on Medical Imaging, 37(12), 2572–2581. https://doi.org/10.1109/TMI.2018.2845911

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 6, Issue 6, November-December 2023||

DOI:10.15662/IJARCST.2023.0606009

- 30. Mohanty, S. P., Jagadeesan, A., & Routray, S. K. (2021). Everything you wanted to know about smart cities: The Internet of things is the backbone. IEEE Consumer Electronics Magazine, 10(1), 10–17. https://doi.org/10.1109/MCE.2020.2996595
- 31. Raut, R. D., Mangla, S. K., Narwane, V. S., & Gardas, B. B. (2019). Exploring the green IT practices and performances in healthcare industry. Journal of Cleaner Production, 237, 117740. https://doi.org/10.1016/j.jclepro.2019.117740
- 32. Karthick, T., Gouthaman, P., Anand, L., & Meenakshi, K. (2017, August). Policy based architecture for vehicular cloud. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 118-124). IEEE.
- 33. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2020). Applying design methodology to software development using WPM method. Journal of Computer Science Applications and Information Technology, 5(1), 1-8.
- 34. Thambireddy, S., Bussu, V. R. R., & Pasumarthi, A. (2022). Engineering Fail-Safe SAP Hana Operations in Enterprise Landscapes: How SUSE Extends Its Advanced High-Availability Framework to Deliver Seamless System Resilience, Automated Failover, and Continuous Business Continuity. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 5(3), 6808-6816.
- 35. Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
- 36. Zhang, Y., Chen, X., & Liu, J. (2022). A blockchain-based secure data sharing scheme for cloud environments. Future Generation Computer Systems, 128, 464–475. https://doi.org/10.1016/j.future.2021.10.008