

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org | A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 8, Issue 5, September-October 2025||

DOI:10.15662/IJARCST.2025.0805022

AI-Powered Food and Fitness Guide using CNN

Siddhi Shinde¹, Snehal Salve², Swapnil Jadhav³, Preetam Patel⁴, Prof. Pallavi Shinde⁵

BE Student, Department of Information Technology, Dhole Patil College of Engineering, Savitribai Phule Pune
University, Pune, India¹⁻⁴

Professor, Department of Information Technology, Dhole Patil College of Engineering, Savitribai Phule Pune
University, Pune, India⁵

ABSTRACT: The aim of this project titled, AI-Powered Food and Fitness Guide Using CNN is the simplification of calories and food intake tracking with the help of AI. The system uses Convolutional Neural Network (CNN) to identify food items on a picture and estimate the amount of calories on the food item. It has a database on nutrition, which provides a breakdown of the nutritional content of foods, such as the number of carbs, proteins, and fats in a food. The app is a full health management platform because it has features like diet suggestions, goal tracking, and voice-based food logging. A user-friendly web interface based on the modern web technologies should provide the user with an opportunity to communicate with the system. The project also integrates the gamification features such as badges and streaks to motivate users to remain committed to healthy practices.

KEYWORDS: Calorie Detection, Convolutional Neural Network (CNN), Food Image Recognition, Nutritional Analysis, Macronutrient Estimation, Diet Recommendation System, Health Monitoring Dashboard,

I. INTRODUCTION

A healthy lifestyle has been made more difficult in the modern world of business and industry, which is quite fast-paced. Human beings can hardly monitor their daily calories, nutrient balance and dietary progress. The conventional calorie-tracking apps are data-intensive in the sense that they require manual verification of data, which is not only time-consuming but also subject to human error.

The project presents an AI-based food and fitness guide, which robotizes the calculation of calories by processing images of food through the Convolutional Neural Networks (CNN). The system uses the Food-101 dataset to learn a deep learning model, which is able to classify food items with a high level of accuracy.

After identifying a food item, the system retrieves the nutritional information of the food item, including calories, carbohydrates, proteins, and fats by using the Open Food Facts API. It also offers customized diet advice based on machine learning approaches, based on user preferences and objectives such as weight loss, gain or maintenance.

II. METHODOLOGY

This system is developed as an end-to-end process with modular and layered architecture to provide scalability and accuracy as well as keep the convenience of the system. Considering the provided information, this particular development process combines machine learning, web development, and database processes for creating the calorie detection and diet recommendation end-to-end system. The steps of the methodology can be described as:

2.1 Data Collection and Preprocessing

First step- In the initial stage, one needs to obtain a large and varied dataset of food images. In this case, the Food-101 dataset was chosen, containing pictures of 101 different food categories, with about 1000 images per class. Images undergo the following operations during preprocessing before training:

- Resizing: All images are resized to a standard dimension (e.g., 224×224 pixels).
- Normalization: Pixel values are scaled to a range of 0–1 for consistent model input.
- Augmentation: Techniques like rotation, flipping, zooming, and brightness adjustment are applied to increase dataset diversity and reduce overfitting.

These steps ensure the CNN learns to generalize effectively across various lighting conditions, plate types, and food presentations.

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org | A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 8, Issue 5, September-October 2025||

DOI:10.15662/IJARCST.2025.0805022

2.2 Food Classification using CNN

The model is a Convolutional Neural Network implemented in TensorFlow/Keras. It includes several layers including:

- Multiple convolutional layers extracts feature from the image such color, texture, and shape using.
- Pooling layers reduces the spatial dimension of the extracted feature while retaining the important information.
- Fully connected layers map the extracted feature to its corresponding food class.
- SoftMax activation function in the output layer for multi-class expression sorting.

The model is trained with categorical cross-entropy loss and optimized using the Adam optimizer. After sufficient training epochs, the model achieves high accuracy in identifying food categories.

2.3 Nutritional Information Retrieval

When a food item is determined, its nutritional data is retrieved from the Open Food Facts API [8] – a free, open-source database that includes the following information for each food item presented:

- Calorie values in kcal
- Macronutrients such as carbohydrates, proteins, and fats
- Micronutrients including available vitamins and minerals
- Portion and serving size details

If the API does not have data on a particular food, a fallback system based on rules restores approximate data from the nutrition dictionary with pre-defined values for each food product type.

2.4 Frontend and Visualization

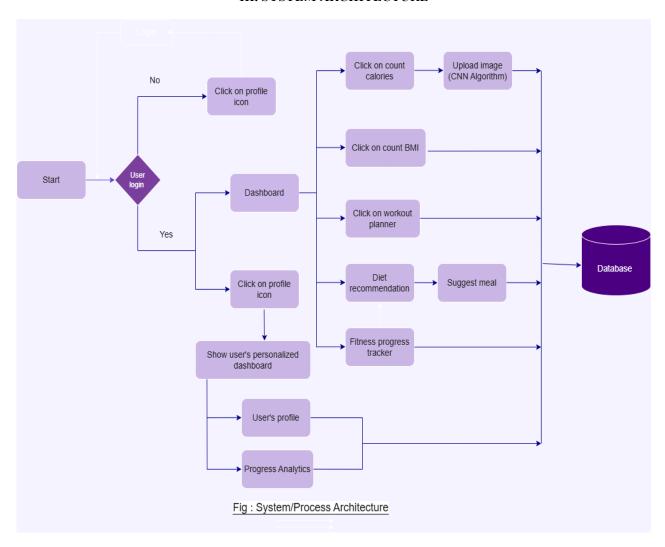
The frontend interface is developed utilizing React.js, HTML, CSS, and Bootstrap to foster responsiveness and a modern outlook. Some of the essential UI features are as follows:

- Dashboard: Show calorie consumption, macronutrients report, and goal prosperity integrated with Chart.js.
- Food Upload Panel: Permits users to upload frames and images directly for counting calories.
- Food Log Section: Maintains a daily and weekly summary of meals and nutrients.
- Diet Recommendation Panel: Suggests balanced meals according to user goals.

The frontend communicates with the backend through RESTful APIs, providing real-time updates and dynamic content rendering.

2.5 Workflow Summary

- 1. The user uploads a food image into the system.
- 2. The image is preprocessed and is fed to the input layer of the CNN model.
- 3. The model predicts the food class, displaying a confidence level.
- 4. The calorie and nutrient data are retrieved from the appropriate API or prevalent dictionary.
- 5. The results are then displayed to the user on the dashboard.
- 6. The log is stored in the database, and the suggestions are made to update the diet.
- 7. The user's progress and streaks are represented in real time using various markers on the appropriate figures shown to the user.



| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org | A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 8, Issue 5, September-October 2025||

DOI:10.15662/IJARCST.2025.0805022

III. SYSTEM ARCHITECTURE

The system is composed of three major layers:

- Frontend Layer: Designed using React, HTML, CSS, Bootstrap to create a responsive and mobile-friendly interface.
- Backend Layer: Developed in Django (Python), integrating REST APIs for model prediction, authentication, and food data retrieval.
- Database Layer: MySQL or Firebase stores user profiles, logs, and calorie data.

The network of these layers makes the CNN model constantly in touch with the backend and frontend to maintain smooth, real-time user experience.

IV. RESULTS AND DISCUSSION

Testing shows that the CNN model trained using the Food-101 dataset has an accuracy rate of about 70%. Food-101 model is capable of recognizing common food items and fetching the associated calibrated data from the nutrition API including their average calories.

When coupled with the web dashboard, a user-friendly interface is established to monitor calorie intake, nutrients uptake, and fitness activities. Voice log module simplifies data entry while the gamification module makes it more engaging.

| ISSN: 2347-8446 | www.ijarcst.org | editor@ijarcst.org |A Bimonthly, Peer Reviewed & Scholarly Journal

||Volume 8, Issue 5, September-October 2025||

DOI:10.15662/IJARCST.2025.0805022

Connecting pioneering food recognition technology with real application and real-time health monitoring is a crucial step.

V. CONCLUSION

The Guide to Food and Fitness Using AI shows how deep learning and systems based on rules can be combined for managing what you eat. By automating food recognition and calorie estimation, the system reduces manual effort and human error while promoting healthier habits. The project provides a scalable foundation for future improvements, such as real-time multi-item detection, integration with wearable fitness devices, and AI-driven adaptive diet recommendations. This approach can help individuals maintain long-term dietary awareness and fitness progress through technology.

VI. FUTURE SCOPE

- Creating a system to spot different foods together on a dish all at once.
- Linking up with smartwatches or fitness devices to change calorie plans based on how active you are.
- Building a phone app that can instantly figure out what food is by using the camera.
- Making the CNN model better by using transfer learning, so it gets more accurate and works well with different sets of information.

REFERENCES

- [1] A food recommender system considering nutritional information and user preferences.RACIEL YERA1, AHMAD A. ALZAHRANI 2, LUIS MARTÍNEZ 3, (MEMBER, IEEE)
- [2] A Review of Image-Based Food Recognition and Volume Estimation Artificial Intelligence Systems. Fotios S. Konstantakopoulos , Eleni I. Georga , *Member, IEEE*, and Dimitrios I. Fotiadis , *Fellow, IEEE*
- [3] A Hybrid Approach Based Diet Recommendation System Using ML and Big Data Analytics. Muhib Anwar Lambay and S. Pakkir Mohideen
- [4] Vision-Based Approaches for Automatic Food Recognition and Dietary Assessment: A SurveyMOHAMMED AHMED SUBHI 1, (Member, IEEE), SAWAL HAMID ALI1, (Member, IEEE), AND MOHAMMED ABULAMEER MOHAMMED2
- [5] DeepFood: Food Image Analysis and Dietary Assessment via Deep Model. LANDU JIANG 1,2, (Member, IEEE), BOJIA QIU 2, XUE LIU 2, (Fellow, IEEE), CHENXI HUANG 1, AND KUNHUI LIN 1
- [6] Quantized Deep Residual Convolutional Neural Network for Image-Based Dietary Assessment. REN ZHANG TAN1, XINYING CHEW 1, AND KHAI WAH KHAW2
- [7] DietGlance: Dietary Monitoring and Personalized Analysis at a Glance with Knowledge-Empowered AI Assistant. Zhihan Jiang 1, Running Zhao 1, Lin Lin1, Yue Yu2, Handi Chen1, Xinchen Zhang1.Xuhai "Orson" Xu3, Yifang Wang4, Xiaojuan Ma †2, and Edith C.H. Ngai
- [8] Personalized Diet Recommendation System Using Machine Learning. Asst Prof. Mrs. D. Navya Narayana Kumari, T. Praveen Satya, B. Manikanta, A. Phani Chandana, Y. L.S Aditya
- [9] Calorie Detection Using Image Recognition: A Deep Learning Approach For Fitness Applications. Lavanya, Divya Sharma Dept. Of Artificial Intelligence And Machine Learning,

Indira Gandhi Delhi Technical, University For Women.

[10] Automated Dietary Recommendation System using Machine Learning. Katta Sreeja1, Lekkala Sathwika2, Gubba Varshith3, Dr. A. S. Narasimha Raju.