Integrating AI and Cloud for Smart UI Building Management, Marketing Insights, and Cyber-Resilient Architectures
DOI:
https://doi.org/10.15662/IJARCST.2025.0806002Keywords:
AI-Cloud Integration, Smart Building Management, BMS, Marketing Analytics, Cybersecurity, Cyber-Resilient Architecture, Intelligent Systems, Cloud-Native Solutions, Data-Driven Marketing, IoT, Real-Time MonitoringAbstract
The convergence of Artificial Intelligence (AI) and cloud computing is transforming modern building management, marketing strategies, and cybersecurity practices. This study presents a comprehensive framework for smart building management systems (BMS) that leverages cloud-native AI to enable real-time monitoring, predictive maintenance, and energy optimization. Simultaneously, the framework integrates data-driven marketing insights, allowing organizations to align operational efficiency with customer-centric strategies. Emphasizing cyber-resilient architectures, the system incorporates advanced security measures to protect sensitive data and ensure uninterrupted service delivery across distributed cloud environments. Experimental evaluations demonstrate enhanced building performance, improved decision-making through AI-driven analytics, and robust cybersecurity resilience. The proposed approach highlights the potential of AI-cloud synergy to optimize infrastructure management, streamline marketing processes, and strengthen digital security, paving the way for intelligent, secure, and adaptive enterprise ecosystems.
References
1. Chen, X., & Zhang, L. (2021). AI and cloud computing synergy in insurance: Enhancing customer engagement through immersive technology. Journal of Insurance Innovation, 12(3), 145–162. https://doi.org/10.1016/j.jii.2021.06.005
2. Lanka, S. (2025). AI DRIVEN HEALTHCARE AT SCALE: PERSONALIZATION AND PREDICTIVE TOOLS IN THE CVS HEALTH MOBILE APP. International Journal of Research and Applied Innovations, 8(3), 12280-12297.
3. Kumar, S., & Patel, R. (2020). Applications of AR/VR in life insurance: Customer experience and operational benefits. International Journal of Financial Services Technology, 9(1), 34–48.
4. Adari, V. K., Chunduru, V. K., Gonepally, S., Amuda, K. K., & Kumbum, P. K. (2023). Ethical analysis and decision-making framework for marketing communications: A weighted product model approach. Data Analytics and Artificial Intelligence, 3 (5), 44–53.
5. Li, J., Wang, H., & Zhao, T. (2023). Multi-modal deep learning for risk assessment in insurance underwriting. IEEE Transactions on Neural Networks and Learning Systems, 34(5), 1985–1997. https://doi.org/10.1109/TNNLS.2022.3170054
6. Azmi, S. K. (2021). Spin-Orbit Coupling in Hardware-Based Data Obfuscation for Tamper-Proof Cyber Data Vaults. Well Testing Journal, 30(1), 140-154.
7. Nallamothu, T. K. (2025). THE FUTURE OF BUSINESS INTELLIGENCE: INTEGRATING AI ASSISTANTS LIKE DAX COPILOT INTO ANALYTICAL WORKFLOWS. International Journal of Research and Applied Innovations, 8(1), 11663-11674.
8. Singh, A., & Desai, K. (2019). Virtual reality in insurance: Trends and future prospects. Insurance Technology Review, 7(4), 59–74.
9. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2024). Evaluation of crime rate prediction using machine learning and deep learning for GRA method. Data Analytics and Artificial Intelligence, 4(3). REST Publisher. https://doi.org/10.46632/daai/4/3/3
10. Reddy, B. V. S., & Sugumar, R. (2025, June). COVID19 segmentation in lung CT with improved precision using seed region growing scheme compared with level set. In AIP Conference Proceedings (Vol. 3267, No. 1, p. 020154). AIP Publishing LLC.
11. Wang, Y., & Lee, S. (2024). Vision language models and mixed reality in financial customer service: Empathetic virtual agents. arXiv preprint arXiv:2410.12051. https://arxiv.org/abs/2410.12051
12. Konda, S. K. (2022). STRATEGIC EXECUTION OF SYSTEM-WIDE BMS UPGRADES IN PEDIATRIC HEALTHCARE ENVIRONMENTS. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 5(4), 7123-7129.
13. Koetter, F., Blohm, M., Kochanowski, M., Goetzer, J., Graziotin, D., & Wagner, S. (2018). Motivations, Classification and Model Trial of Conversational Agents for Insurance Companies. arXiv. https://arxiv.org/abs/1812.07339
14. Shi, Y., Siddharth, N., Paige, B., & Torr, P. H. S. (2019). Variational mixture-of-experts autoencoders for multi-modal deep generative models. arXiv preprint arXiv:1911.03393. https://arxiv.org/abs/1911.03393
15. Sato, K. (2017). Using machine learning for insurance pricing optimization. Google Cloud Blog. Retrieved from https://cloud.google.com/blog/products/gcp/using-machine-learning-for-insurance-pricing-optimization
16. Narapareddy, V. S. R., &Yerramilli, S. K. (2024). Zero-Touch EmployeeUX. Universal Library of Engineering Technology., 01 (02), 55–63.
17. Zerine, I., Biswas, Y. A., Doha, Z., Meghla, H. M., & Polas, M. R. H. (2025). Understanding Behavioral Intentions to Use Cryptocurrency for the Future of Digital Finance: Evidence from Bangladesh. Journal of Comprehensive Business Administration Research.
18. Venkata Ramana Reddy Bussu,, Sankar, Thambireddy, & Balamuralikrishnan Anbalagan. (2023). EVALUATING THE FINANCIAL VALUE OF RISE WITH SAP: TCO OPTIMIZATION AND ROI REALIZATION IN CLOUD ERP MIGRATION. International Journal of Engineering Technology Research & Management (IJETRM), 07(12), 446–457. https://doi.org/10.5281/zenodo.15725423
19. Zhang, Y., Zhang, Y., Wu, W., Zhou, Z., & Li, Q. (2023). POSGen: Personalized opening sentence generation for online insurance sales. arXiv preprint arXiv:2302.06470. https://arxiv.org/abs/2302.06470
20. Islam, M. M., Zerine, I., Rahman, M. A., Islam, M. S., & Ahmed, M. Y. (2024). AI-Driven Fraud Detection in Financial Transactions-Using Machine Learning and Deep Learning to Detect Anomalies and Fraudulent Activities in Banking and E-Commerce Transactions. Available at SSRN 5287281.
21. Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., ... & Tenenbaum, J. B. (2020). ThreeDWorld: A platform for interactive multi-modal physical simulation. arXiv preprint arXiv:2007.04954. https://arxiv.org/abs/2007.04954
22. Raju, L. H. V., & Sugumar, R. (2025, June). Improving jaccard and dice during cancerous skin segmentation with UNet approach compared to SegNet. In AIP Conference Proceedings (Vol. 3267, No. 1, p. 020271). AIP Publishing LLC.
23. Sangannagari, S. R. (2025). ARCHITECTURE FOR A BLOCKCHAIN-BASED CERTIFICATION PLATFORM FOR EXPLOSION-PROOF DEVICES. International Journal of Research and Applied Innovations, 8(2), 11956-11975.
24. Hendriksen, M., Bleeker, M., Vakulenko, S., van Noord, N., & Kuiper, E. (2021). Extending CLIP for category-to-image retrieval in e-commerce. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, 10654–10663. https://doi.org/10.1109/ICCV48922.2021.01045


