Real-Time Quantum-AI Cloud Framework Integrating Oracle and SAP for Intelligent Financial Systems
DOI:
https://doi.org/10.15662/IJARCST.2025.0806010Keywords:
Quantum Computing, Artificial Intelligence, Cloud Computing, Real-Time Analytics, Oracle Integration, SAP Integration, Financial Systems, Predictive Modeling, Intelligent Finance, Secure Cloud Infrastructure, FinTechAbstract
This paper introduces a Real-Time Quantum-AI Cloud Framework that integrates Oracle and SAP enterprise platforms to enable next-generation intelligent financial systems. The proposed architecture combines quantum computing and artificial intelligence (AI) within a secure cloud infrastructure, optimizing real-time data analytics, decision-making, and transaction management. Quantum processing accelerates complex financial computations, while AI-driven models support predictive insights, anomaly detection, and automated financial operations. Integration with Oracle and SAP ensures unified data orchestration across accounting, risk management, and enterprise resource planning (ERP) modules. The framework enhances performance through reduced latency, improved scalability, and adaptive security mechanisms, addressing the evolving needs of modern financial institutions. Experimental evaluations highlight significant improvements in throughput, predictive accuracy, and operational resilience, demonstrating the potential of the Quantum-AI Cloud as a foundation for future-ready, intelligent financial ecosystems.
References
1. Chen, Y., & Gupta, R. (2023). Quantum-assisted database optimization in enterprise systems. Journal of Cloud Computing, 12(3), 145–163.
2. Soundappan, S.J., Sugumar, R.: Optimal knowledge extraction technique based on hybridisation of improved artificial bee colony algorithm and cuckoo search algorithm. Int. J. Bus. Intell. Data Min. 11, 338 (2016)
3. Nallamothu, T. K. (2024). Real-Time Location Insights: Leveraging Bright Diagnostics for Superior User Engagement. International Journal of Technology, Management and Humanities, 10(01), 13-23.
4. Das, K., & Nair, V. (2023). Optimizing SAP financial analytics on Oracle Cloud Infrastructure. International Journal of Information Systems, 17(4), 221–239.
5. Chunduru, V. K., Gonepally, S., Amuda, K. K., Kumbum, P. K., & Adari, V. K. (2022). Evaluation of human information processing: An overview for human-computer interaction using the EDAS method. SOJ Materials Science & Engineering, 9(1), 1–9.
6. Sivaraju, P. S. (2024). PRIVATE CLOUD DATABASE CONSOLIDATION IN FINANCIAL SERVICES: A CASE STUDY OF DEUTSCHE BANK APAC MIGRATION. ITEGAM-Journal of Engineering and Technology for Industrial Applications (ITEGAM-JETIA).
7. Gupta, M., & Chen, L. (2023). Hybrid quantum-classical computing for enterprise analytics. IEEE Cloud Computing, 10(3), 44–60.
8. Sugu, S. Building a distributed K-Means model for Weka using remote method invocation (RMI) feature of Java. Concurr. Comp. Pract. E 2019, 31. [Google Scholar] [CrossRef]
9. Li, X., & Rahman, H. (2024). Quantum annealing in large-scale database optimization. Quantum Information Systems Journal, 8(1), 88–104.
10. Arjunan, T., Arjunan, G., & Kumar, N. J. (2025, July). Optimizing the Quantum Circuit of Quantum K-Nearest Neighbors (QKNN) Using Hybrid Gradient Descent and Golden Eagle Optimization Algorithm. In 2025 International Conference on Computing Technologies & Data Communication (ICCTDC) (pp. 1-7). IEEE.
11. Joseph, J. (2025). Enabling Responsible, Secure and Sustainable Healthcare AI-A Strategic Framework for Clinical and Operational Impact.
12. Batchu, K. C. (2024). Integrating Heterogeneous ETL Pipelines: Towards Unified Data Processing Across Cloud and Legacy Systems. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(3), 10491-10498.
13. Manda, P. (2022). IMPLEMENTING HYBRID CLOUD ARCHITECTURES WITH ORACLE AND AWS: LESSONS FROM MISSION-CRITICAL DATABASE MIGRATIONS. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 5(4), 7111-7122.
14. Mehta, A., & Singh, R. (2022). Oracle database optimization for SAP applications. Journal of Database Systems, 11(2), 134–150.
15. Nair, T., Osei, K., & Patel, K. (2024). Quantum-inspired data processing in SAP financial analytics. FinTech Research Review, 9(2), 201–218.
16. Joseph, J. (2025). Enabling Responsible, Secure and Sustainable Healthcare AI-A Strategic Framework for Clinical and Operational Impact, https://doi.org/10.48550/arXiv.2510.15943. https://www.researchgate.net/profile/Jimmy-Joseph-9/publication/396316182_Enabling_Responsible_Secure_and_Sustainable_Healthcare_AI_-A_Strategic_Framework_for_Clinical_and_Operational_Impact/links/68e687e002d6215259ba243f/Enabling-Responsible-Secure-and-Sustainable-Healthcare-AI-A-Strategic-Framework-for-Clinical-and-Operational-Impact.pdf
17. Nielsen, M. A., & Chuang, I. L. (2021). Quantum computation and quantum information (2nd ed.). Cambridge University Press.
18. Park, J., & Zhou, L. (2023). Quantum-classical synergy in financial decision systems. Quantum Computing Applications Journal, 6(1), 55–71.
19. Lanka, S. (2025). ARCHITECTURAL PATTERNS FOR AI-ENABLED TRIAGE AND CRISIS PREDICTION SYSTEMS IN PUBLIC HEALTH PLATFORMS. International Journal of Research and Applied Innovations, 8(1), 11648-11662.
20. Zerine, I., Islam, M. S., Ahmad, M. Y., Islam, M. M., & Biswas, Y. A. (2023). AI-Driven Supply Chain Resilience: Integrating Reinforcement Learning and Predictive Analytics for Proactive Disruption Management. Business and Social Sciences, 1(1), 1-12.
21. Pasumarthi, A., & Joyce, S. (2025). Leveraging SAP’s Business Technology Platform (BTP) for Enterprise Digital Transformation: Innovations, Impacts, and Strategic Outcomes. International Journal of Computer Technology and Electronics Communication, 8(3), 10720-10732.
22. Zerine, I., Biswas, Y. A., Doha, Z., Meghla, H. M., & Polas, M. R. H. (2025). Understanding Behavioral Intentions to Use Cryptocurrency for the Future of Digital Finance: Evidence from Bangladesh. Journal of Comprehensive Business Administration Research.
23. Devarashetty, P. K. "Generative AI for Dynamic Pricing Strategies in SAP Sales Suite." J Artif Intell Mach Learn & Data Sci 2023 1.3: 1498-1504.
24. Adigun, P. O., Oyekanmi, T. T., & Adeniyi, A. A. (2023). Simulation Prediction of Background Radiation Using Machine Learning. New Mexico Highlands University.
25. Rahman, F., & Patel, D. (2023). Quantum computing for high-performance financial analytics. Journal of FinTech Innovation, 7(2), 123–140.
26. Dr R., Sugumar (2023). Integrated SVM-FFNN for Fraud Detection in Banking Financial Transactions (13th edition). Journal of Internet Services and Information Security 13 (4):12-25.
27. Thambireddy, S., Bussu, V. R. R., & Mani, R. (2024). Optimizing SAP S/4HANA Upgrades through Sum: The Role of Silent Data Migration (SDMI) in Downtime Reduction. International Journal of Research and Applied Innovations, 7(3), 10727-10734.
28. Gonepally, S., Amuda, K. K., Kumbum, P. K., Adari, V. K., & Chunduru, V. K. (2023). Addressing supply chain administration challenges in the construction industry: A TOPSIS-based evaluation approach. Data Analytics and Artificial Intelligence, 3(1), 152–164.
29. Smith, J., & Thomas, L. (2021). Cost-based optimization in Oracle databases: Trends and challenges. Database Management Review, 19(3), 66–81.


