Responsible Intelligence in Cloud-Native Software Engineering: Ethical AI and NLP Framework for Secure Software-Defined Networks
DOI:
https://doi.org/10.15662/IJARCST.2021.0405004Keywords:
Responsible Artificial Intelligence (AI), Cloud-Native Software Engineering, Software-Defined Networks (SDN), Natural Language Processing (NLP), Ethical Computing, Explainable AI (XAI), Cognitive Cloud Framework, Secure Orchestration, Trust-Aware APIs, AI GovernanceAbstract
The convergence of Ethical Artificial Intelligence (AI), Natural Language Processing (NLP), and cloud-native software engineering is redefining the foundation of secure and intelligent network infrastructures. This paper proposes a Responsible Intelligence Framework for Software-Defined Networks (SDNs) that integrates ethical AI principles and NLP-driven automation to enhance decision transparency, trust, and resilience in cloud-native ecosystems. The framework introduces an explainable AI layer embedded within SDN controllers, enabling semantic understanding of network policies, intent-based orchestration, and dynamic anomaly detection through NLP-assisted rule interpretation. Ethical intelligence modules govern AI decision-making, ensuring compliance with fairness, accountability, and privacy-preserving standards throughout the software lifecycle. The study highlights a multi-tier cloud-native architecture where containerized microservices communicate via trust-aware APIs, monitored by cognitive agents capable of ethical self-adaptation. Experimental simulations demonstrate significant improvements in security compliance, fault recovery time, and explainability of AI-based network operations. The proposed approach establishes a foundation for responsible, interpretable, and secure AI integration in next-generation cloud-native software systems.
References
1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095
2. Amuda, K. K., Kumbum, P. K., Adari, V. K., Chunduru, V. K., & Gonepally, S. (2020). Applying design methodology to software development using WPM method. Journal ofComputer Science Applications and Information Technology, 5(1), 1-8.
3. Vengathattil, S. (2019). Ethical Artificial Intelligence - Does it exist? International Journal for Multidisciplinary Research, 1(3). https://doi.org/10.36948/ijfmr.2019.v01i03.37443
4. R. Sugumar, A. Rengarajan and C. Jayakumar, Design a Weight Based Sorting Distortion Algorithm for Privacy Preserving Data Mining, Middle-East Journal of Scientific Research 23 (3): 405-412, 2015.
5. Srinivas Chippagiri, Preethi Ravula. (2021). Cloud-Native Development: Review of Best Practices and Frameworks for Scalable and Resilient Web Applications. International Journal of New Media Studies: International Peer Reviewed Scholarly Indexed Journal, 8(2), 13–21. Retrieved from https://ijnms.com/index.php/ijnms/article/view/294
6. Azmi, S. K. (2021). Delaunay Triangulation for Dynamic Firewall Rule Optimization in Software-Defined Networks. Well Testing Journal, 30(1), 155-169.
7. Floridi, L., & Cowls, J. (2019). A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1), 1–15. https://doi.org/10.1162/99608f92.8cd550d1
8. Goyal, P. (2018). Natural Language Processing with Python and spaCy: A practical introduction. Apress. https://doi.org/10.1007/978-1-4842-3733-5
9. IBM Corporation. (2015). IBM Cognitive Computing: A Brief Guide for Practitioners. IBM Redbooks.
10. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
11. Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76. https://doi.org/10.1109/JPROC.2014.2371999
12. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
13. Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (Special Publication 800-145). National Institute of Standards and Technology.
14. Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. Farrar, Straus and Giroux.
15. Salehi, M., & Goudarzi, M. (2016). Resource-aware cloud computing: Techniques and challenges. Computers & Electrical Engineering, 51, 151–166. https://doi.org/10.1016/j.compeleceng.2015.10.015
16. Shailendra, S., & Kumar, P. (2018). Cognitive software-defined networks: A new paradigm for intelligent cloud computing. International Journal of Computer Networks & Communications, 10(3), 23–34. https://doi.org/10.5121/ijcnc.2018.10303
17. Cherukuri, B. R. (2020). Ethical AI in cloud: Mitigating risks in machine learning models.
18. Begum, R.S, Sugumar, R., Conditional entropy with swarm optimization approach for privacy preservation of datasets in cloud [J]. Indian Journal of Science and Technology 9(28), 2016. https://doi.org/10.17485/ijst/2016/v9i28/93817’
19. Kumbum, P. K., Adari, V. K., Chunduru, V. K., Gonepally, S., & Amuda, K. K. (2020). Artificial intelligence using TOPSIS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 3(6), 4305-4311.
20. Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7–18. https://doi.org/10.1007/s13174-010-0007-6


